
Basic Hazmat Detection Guide 
By SART 2019 

Introduction 
This guide will cover a basic method of hazmat detection which was used by SART in the 

RMRC at RoboCup 2019. The instructions in this guide aim to reconstruct, from scratch, the 

hazmat detector used by SART in the 2019 competition, where we successfully won the 

point for hazmat detection. 

This guide assumes you understand python fundamentals such as lists, tuples, how to 

define functions and classes, as well as the concept of a python module. 

If you have any questions, feel free to email me at anthony.gambale@sfxrescue.com. 
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Part 0 – Preparation 
To prepare for the guide, set up your project files and folders like this: 

▪ hazmat.py 

▪ modules 

▪ HOGUtils.py 

▪ colorlabeler.py 

▪ shapedetector.py 

▪ classify 

▪ classify_abstracted.py 

▪ templates 

▪ 1.jpg 

▪ 1.png 

▪ 2.jpg 

▪ 2.png 

▪ … 

▪ 26.jpg 

▪ 26.png 

This file tree is constructed exactly as the SIGHTSVision repository was during RoboCup 

2019. The images in the templates folder will be found somewhere in the SIGHTSVision 

repository at https://github.com/SFXRescue/SIGHTSVision. 

You will need to have python 3 installed, as well as the packages imutils, argparse and 

numpy which can be installed via pip. 

mailto:anthony.gambale@sfxrescue.com
https://github.com/SFXRescue/SIGHTSVision


One more package, opencv, can be installed from https://opencv.org/. The code in this guide 

was run, functionally, on OpenCV version 3.4.2. 

Part 1 – Helper Classes 
First, we will first write two helper classes, ShapeDetector and ColorLabeler (defined in 

shapedetector.py and colorlabeler.py respectively), which will aid us by detecting shapes 

and labelling colours. The ShapeDetector and ColorLabeler objects we used in the 

competition were borrowed from Adrian Rosebrook’s tutorials, which you can find here: 

ShapeDetector: 

https://www.pyimagesearch.com/2016/02/08/opencv-shape-detection/ 

ColorLabeler: 

https://www.pyimagesearch.com/2016/02/15/determining-object-color-with-opencv/ 

Note that the definitions of these classes are only a part of both of these tutorials. Instead of 

following the entire tutorials, you should skip to the part where Adrian defines the class and 

copy that definition. 

Part 2 – HOGUtils Helper Functions 
Most of the HOGUtils helper functions, originally written by Alex Cavalli, will be described in 

the following part for you to define in HOGUtils.py in your own project. 

First are the modules to import: 

 

As you can see, ShapeDetector and ColorLabeler are both imported from our project files. 

Image Pyramids 
First we will write a function that generates an image pyramid. An image pyramid is simply a 

series of images. Each image is a copy of the original image (also called the “base” image, 

as it is the pyramid’s base) with each successive image having its length divided by some 

scale factor, s. The following diagram depicts an image pyramid with a scale factor of 2: 

https://opencv.org/
https://www.pyimagesearch.com/2016/02/08/opencv-shape-detection/
https://www.pyimagesearch.com/2016/02/15/determining-object-color-with-opencv/


 

Each layer has a width and height which is equal to the width and height of the previous 

layer, divided by s. The base layer has width and height w and h. The next layer has width 

and height w/s and h/s, and the next layer will have w/s2 and h/s2, and so on. 

The following diagram depicts a general image pyramid with a scale factor of s: 

 

Image pyramids are useful for increasing the accuracy of image analysis tasks, like contour 

detection. 

The pyramid() function will take three inputs: an image, a value for s, and a tuple for the 

minimum dimensions. The function ends when the current layer is smaller than the minimum 

size (so the current layer will become the final layer). 

Define the function as follows: 

 

After the definition, we store the width of the base image in base_width and yield the base of 

the pyramid to be the first entry in the output. The (image, 1) tuple will make more sense 

when you see what the rest of the outputs look like. 



Next, we open a while True loop. This loop will yield successive levels of the pyramid, until 

we reach an image which is smaller than the minSize tuple, when the loop will break. 

 

First, we divide by s to get the width of the next level. Then, we resize the current image to 

have this new width, to be the image for the next level. 

Now, we want to know the ratio between the width of the base level and the width of the 

current level. Unlike “s” (scale), which gives us a connection between the current level and 

the level beforehand (level-beforehand-width / s = current-level-width) we want this number 

to connect the base level to the current level (base-width / ratio = current-level-width). 

We can consider each level of the pyramid having a number – the base is level 0, then the 

next are 1, 2, 3, 4… we will call this number n. As seen in the diagrams above, the width of 

the nth pyramid level will be equal to w/sn (w/s/s/s/s n times). So, this number that we want is 

sn, as I described in the paragraph above (base-width / ratio = current-level-width). 

We find sn by dividing the width of the base of the pyramid (base_width) by the width of the 

current level of the pyramid (image.shape[1]). This can be shown by: 

𝑟𝑎𝑡𝑖𝑜 =
𝑤
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Now, with these things we’ve computed, we finish by checking if the current image is under 

the minimum width or under the minimum height. If so, we break. If not, we yield the current 

image and the current ratio. 

 



The output of this function will look something like: 

pyramid(img, s, minSize) = [ (img, 1), (img, s), (img, s2), (img, s3) … (img, sn) ] 

When searching through the image, any coordinates you find on a higher level of the 

pyramid will need to be scaled back up to the base layer. Suppose the following: 

  

As the width and height of the current layer are equal to the width and height of the base 

layer divided by the ratio, you can imagine that the x and y coordinates we have were also 

divided by the ratio to be mapped onto the smaller image. So, to bring it back to the base 

image we need to multiply them by the ratio. Note that this “ratio” I am referring to is the one 

given in the output of the pyramid() function. I give more detail on how to do this in the 

Improving Contour Detection section. 

Sliding Windows 
The next HOGUtils function is similar to image pyramid, in that it turns a single image into a 

series of images so your image analysis can be more effective. The sliding window slices the 

image up into sections, as though you were looking over it with a flashlight. 

 



As seen in the image above, in a similar motion to moving a flashlight, the sliding window 

takes slices out moving across. When it reaches the edge it lowers the window slightly and 

begins again from the left: 

 

This process should be paired with an image pyramid. You should create an image pyramid 

and put a sliding window over each level. I discuss this further in the Improving Contour 

Detection section. 

The sliding window function takes an image, a step distance and a window size tuple as 

inputs. We define it as follows: 

 

First, we begin looping over every possible y height for the sliding window using the range 

function. Underneath this for loop, we also loop over every possible x value: 

 

You can imagine the x and y values generated as being in these positions: 

 



The double for loop pairs every possible y height with every possible x distance. You can 

imagine these pairs as the spots on the image above where the lines cross over. With every 

possible combination of the x and y values, we can cut evenly spaced slices out to use as 

our “sliding window”, moving from one to the next like a flashlight. 

 

Now, we simply yield a new tuple. The tuple is of form (x, y, image). The x and y are the 

coordinates of the top left hand corner of the image, which is calculated by slicing a region 

out of the whole image, starting at x and y and going to the right and down by our sliding 

window dimensions from the function inputs.  

Calling image[1:2, 6:7], for example, will cut out a slice between the x values 6 and 7 and 

between the y values 1 and 2. We are doing the same, except with y:y+windowSize[1], and 

x:x+windowSize[0], as shown in the image below.  

 

The output of the function should look like this: 

sliding_window(img, stepSize, windowSize) = [ (x1, y1, image), (x2, y1, image), (x3, y1, 

image) … (x1, y2, image), (x2, y2, image), (x3, y2, image) … ] 

(the y values stay constant because they are on the outside of the double for loop). 

This output can be iterated over, and each image operated on individually. 

Similar to image pyramids, if you find a coordinate inside a sliding window that you want to 

keep, you need to do some maths to map it back to the original image. Suppose the 

following scenario: 



 

To map our (x,y) point that we found in the sliding window back to the base image, we 

simply add xn to x and yn to y to get this: 

 

Contour Detection 
Contour detection locates areas in the image which seem to be a boundary between two 

colours. We did not utilize sliding windows or image pyramids in the final version of our 

contour detection; however they are very important concepts and you can see Improving 

Contour Detection to see how you would apply them.  

We will make a function called colorShape that will take 4 inputs: an image, a boolean 

stating whether or not to include colour detection, another for shape detection, and a 

threshold value for binary thresholding. Define it as follows: 



 

And, after the definition, create some variations on the image. blurred is the image with a 

slight blur applied, and gray is the image in greyscale. This is done with some OpenCV 

helper functions. 

Next, we perform binary thresholding on the greyscale variation of the image using the 

OpenCV function. The function returns an array, but we only want the image, so we take it 

from the array’s second entry (hence the [1] at the end of each function call). 

 

Binary thresholding is a very simple procedure, so much so that we could implement it 

ourselves (As OpenCV images are simply an array of pixel values, we could iterate over the 

array and manipulate each value manually). It simply looks at the brightness value of each 

pixel (255 being bright white, 0 being dark black). If it is below a certain threshold, force the 

pixel to be black, and if it is above that threshold force it to be white. We also create an 

inverted image, which switches the black pixels to white and the white ones to black. This is 

because the edge detector gives slightly different results for each. 

Now, we find the contours in each of these images (taking the second output only) using the 

OpenCV functions. 

 

Now, we initialise a shape detector and a colour labeller to help analyse the contours we 

found. We also make an empty list called desc where we will put our completed descriptions 

of each contour. On the last line, we start the for loop which iterates over every contour. We 

start with cnts_thresh, and we will repeat the exact same process for cnts_invert afterwards. 

 

In the following image, there is old code for computing the centre of the contour. We don’t do 

this anymore, however the centre point is still included in the output. It would be too difficult 

to remove it from the output, because we would then have to find each place that the 

function is called and change it to expect a different number of outputs. It is far easier just to 

set it to an arbitrary pair of numbers. 



 

You do not have to include any of the commented out code, unless you want to utilize the 

centre point of your contours in your project. 

Next, we ask the colour labeller and the shape detector to determine the shape and colour of 

whatever is inside the current contour (line) we are analysing. 

 

Next, we format the colour and the shape into some text: 

 

Add them to the array of descriptions: 

 

And continue looping until we run out of contours. After this, we rewrite the same code but 

for cnts_invert, as seen below: 

 

Now, outside of both of these for loops, we can return our now full array of descriptions: 

 



As you can see, the level of indentation of the return desc statement should be the same as 

both for loops. 

Finally, we want to create a very simple function that turns a contour into a bounding box. It 

simply finds the highest, lowest, leftmost and rightmost reaches of the contour and fits a box 

around it, as sketched below: 

 

Passing in a contour “c” to our function, we can read the min and max values for X and Y as 

so: 

 

The angle feature is from an older version and is no longer used, but we’ve left it there so we 

don’t have to change the parts of the code that call this function to expect a different number 

of outputs. 

That is all for HOGUtils. However, if you would like to see how to combine contour detection 

with the pyramid() and sliding_window() functions, I have included a demonstration at the 

end of the guide called Improving Contour Detection. 

Part 3 – Classification 
Classification, in this context, will be the process of taking a region of an image which we’ve 

detected and assigning it with the type of hazmat sign we think it’s most likely to be. For this, 

we use feature matching algorithms that come with OpenCV to make a decision about which 

of our reference images looks the most like the photo we took. This will go in 

classify_abstracted.py. 

The following images, taken from my blog on the SART website on classification, should 

help to give you an intuitive understanding of the algorithm. Features are mapped on an 

image, represented by the rings drawn on the following hazmat sign template: 



 

The algorithm can also compare features on two different images, to see if they are in similar 

positions. The algorithm does account for rotation. 

 

First, the packages to import: 

 



Now, we define the “min match rating” parameter for the brute force feature matching. The 

number is associated with how similar the positions of features in one image need to be to 

the features in another image to be considered a good match. We use it to filter out bad 

matches a list of possibilities. Later, when we define the bff_match() function, I will explain 

why lowering the number makes the filtering process more strict, and increasing it makes is 

less strict. 

 

Now, some parameters for the colour based comparison: 

 

When the colours in two images are compared, they are first made into histograms, showing 

the frequency of each colour in the image. An image can be considered a long list of 3 

dimensional points, with a red value, blue value and green value. These points can be 

reduced to a frequency histogram which would look something like this: 

These can be compared to see which two images have more similar colours, and which 

have less similar. The only issue is it completely disregards the position of things in an 

image – you could flip an image upside down and it would have an identical colour 

histogram. This is why we also do feature matching. 

The “BINS” variable defines the number of bins to which numbers will be allocated. In a 

histogram, bins can be though of as columns. With 4 bins, the histograms above would each 

only have four columns, as shown below: 



 

This is less accurate, but would probably be faster to compute. 

The “COL_COMP_METHOD” variable chooses an option for which method to use to 

compare the similarity of two histograms. The chosen one is called 

“HISTCMP_INTERSECT” and probably has something to do with where the lines of the 

histograms intersect. 

Next, we create a template for a sign object: 

 

Signs will have multiple properties, including a name, an image (file location to save 

memory), their colour histogram, a list of all the features which have been detected on them 

that match features detected on some other image (stored in self.bff_data) and the number 

of those features (in self.bff). This will make more sense later. 

Next, create a helper function which gets the histogram of an image using our parameters: 

 

I can only assume that the “cv2.normalize” function called on the histogram stretches it to fit 

in a certain size. It would be problematic trying to compare two images of different sizes – 

even if one of the two images is very red, it may still have less red pixels than the other, 

simply because it is smaller. Next, we make a helper function which compares two 

histograms: 



 

Depending on which method you use for colour comparison, it will in most cases return a 

single number as a similarity score. This is meaningless on its own, but when compared with 

scores from other images, you can tell which are more similar. This is not actually used in 

our feature matching, as it is not entirely necessary, but it could be added in future. 

Now, we start defining the feature matching function. Start with two parameters, one for the 

image we think may be a sign (image) and one for our template (template). 

  

Next, we make a SIFT object which will detect the features in both images. The 

detectAndCompute function that SIFT performs for us will give us a list of keypoints 

(kp_detection and kp_template) and descriptors (des_detection and des_template). 

Keypoints and descriptors are the raw data behind the abstract idea of a “feature” in an 

image. 

Now, we set some parameters and make a “flann-based” KNN matcher: 

 

The flann matcher will use the KNN algorithm to match the features from our detected sign 

and our sign template, as follows: 

 

The “matches” variable will be a list of pairs. Each pair will be a descriptor from one image 

and a descriptor from the other, which the KNN algorithm deemed to be a good match. 

Now, we perform our own filtering on these matches. This is where the 

MIN_MATCH_RATING variable from earlier comes in, to let fewer or more matches through. 

 

First, we create an empty array for all “good” matches. Then, we search through every pair 

m and n in matches. The m variable will be a descriptor from one of the two images, and the 

n variable will be its counterpart descriptor from the other image. Then, we perform the 

following check: 

 

As we aren’t too sure what the “descriptors” of a feature really are, we can’t be sure what 

their “distance” property is. However, if we use simple logic, we can find out what happens 

when we make MIN_MATCH_RATING bigger or smaller, without understanding these 

concepts. We are comparing these two “distances”, but we don’t know what they mean, so 

let’s just call them A and B. 



A < MIN_MATCH_RATING * B 

As we can see: 

A < 0.0001 * B 

is less likely to be true than 

A < 9999 * B 

If the statement is true, the match is added to the “good” group. Therefore, we can deduce 

that having a smaller value for MIN_MATCH_RATING makes this check more “strict” and 

lets less matches into the “good” group, because the statement will be true less often. 

Finally, we return the list of good matches: 

 

And finally, the function should look like this (make sure your whitespace is correct): 

 

The final function takes all these and compares the region we have found with every sign 

template to see which it best matches. 

 

First, we iterate over every sign in the sign list and calculate their features, including the 

image, feature data, colour histogram data, etc. This could probably be done at the start of 

the program instead of running it every single time we try to classify a sign, which is probably 

what causes the pause between when a sign is detected and when its name is displayed on 

screen. This should be the first thing you change when you complete this guide. 

As you can see, bff_data is used to store the actual features themselves (which match with 

the image we’re trying to classify), and bff is used to store the number of those features. 



 

This last part is very simple. We sort the list of sign templates by how many matches they 

have, but in reverse so that the sign with the most matches comes first. Then, we take it out 

and store it in “best” and return its name. This is the name that is displayed on screen. 

Part 4 – Bringing it all Together 
Now, we use all of the abstraction we just made to create a simple program that does the 

actual hazmat reading for us. This goes in hazmat.py. 

We start by importing all the packages we need, including HOGUtils which we wrote. We 

also create a variable to store the ip address of our robot on our local network.  

 

Now for the arguments: 

 

The “help” argument is the last for each, and you can put whatever you like in it. 

Now, we need to create a list of signs for each template sign, as in our 

modules/classify/templates folder. As shown below, create a list and manually append each 

sign into it with their file path and name. 



 

Now, we want to figure out where the video is coming from based on the arguments from 

argparse. 

 

Now for the main loop. The first thing in the main loop will be to read the most recent frame. 

 

If the frame is being read from a video file then we need to read it slightly differently, as can 

be seen in line 69. If no frame is being read we break the loop. Next, operate on the frame: 

 



First, we resize the frame to a width of 500 pixels. Then we read the colorShape output for 

the frame. Then we create a black image with the same dimensions as the frame which we 

will use as a mask. A mask is a black and white image which the original image can “wear” 

like a mask e.g.: 

 

Finally, we create an array for all bounding boxes of the contours we detected. A bounding 

box has 5 elements – a min and max X and Y value (4) plus the angle (5) (see part 2). So, 

the new array is 5 wide, and starts as 0 deep – this will increase as we add boxes to it. 

Now, we want to loop over all the contours we detected: 

 

If the shape “square” was detected, and the contour area (number of pixels within the 

contour) is larger than our minimum (just stick with the default), we want to add the bounding 

box around that contour to the sqrs array. We also want to draw the contour onto the black 

image we created to be our mask. We draw it in white (hence the 255) and fill it in (hence the 

-1 for thickness) to create the mask effect as shown above. 

Next, we want to apply the mask to the image to create a “masked” version, and we also 

want to choose an image that we want to draw on and then display (I chose the frame). 

 

Now, we iterate over all the bounding boxes. We take the current bounding box out as a 

region, which we will operate on. Even though we include the space around the sign in our 

feature mapping, it shouldn’t affect it as we take it from the masked image (so it’s black). 

 

Now, we want to draw this result onto the screen. We use our classify function to predict 

what it is, and come up with various other things like coordinates, colours, font settings etc. 

The text x and y is at the centre of the bounding box. 



 

Now, we draw the text as well as a box behind it onto the screen: 

 

After the loop is complete, and this process is finished for all contours we detected, we draw 

the frame to the screen and check to see if the user exits the program (make sure this 

happens outside the for loop). 

 

Then, outside the while loop, we add some code to close the window (which will only be run 

if the while loop has been broken): 

 

And that’s it for hazmat.py. To run it, type in console “python hazmat.py -vs w” to make sure 

it uses the webcam. The rest of the arguments can be left to their defaults. 

Improving Contour Detection 
We can improve on contour detection by turning an image into a pyramid and applying a 

sliding window on every single level, and finding as many contours as we can. 

Before I get into it, I want to discuss the way contours are structured in OpenCV. When you 

run cv2.findContours() on an image, you get an array of contours. Each contour is a line that 

follows an edge somewhere on your image. So, you could say the contours are structured as 

[line1, line2, line3 … ] inside the array. So, the lines can be iterated over. 



A line is an array of pixel points on your image. However, it is structured strangely. Here is 

an example of a line array: 

 

Each point is contained in two sets of square brackets, like [[x, y]] (as opposed to [x, y]). You 

can imagine that [x, y] is the first element in a separate array, [[x, y]]. 

If I iterate over a line in some dummy code: 

 

I have to take point[0], as [[x, y]][0] = [x, y]. After I have stripped off the outside square 

brackets I can reference the x and y entry of the point separately. For example: 

[[x, y]][0][0] = [x, y][0] = x 

and  

[[x, y]][0][1] = [x, y][1] = y 

I haven’t included the following file in the project files list from above. This file is purely a 

dummy for testing. From here, you would want to apply this to colorShape in HOGUtils (once 

you have it functioning). 

First, we import everything and define some variables. 

 



I read a random image called shapes_and_colors.jpg. I blur the image, greyscale it and 

threshold it. Typically I would want to threshold it and invert it, but this is only for testing. 

I also create an array called all_contours. This array will store all our contours (the individual 

lines themselves, not the arrays of these lines). 

 

First, I turn the image into an image pyramid and loop over all the levels. Whenever we 

come to a new level of the image pyramid, I do two things. The image pyramid function 

outputs not only an image, but a tuple pair with the image and the ratio of the level. See the 

Image Pyramids section for more details on the output. I save both values in pyramid_image 

and scale respectively. 

Then, I iterate over the list of sliding windows for this level of the pyramid. See Sliding 

Windows for more details on the function. 

  

I also store the x and y coordinates of the top left corner of the current sliding window in two 

variables, and the image in its own variable last. 

Now, I find all the contours within this specific sliding window of this specific level of the 

pyramid: 

 

Iterate on them: 

 

Translate and then scale the points (method as discussed in the Image Pyramids and Sliding 

Windows sections): 

 

Note that I use point[0] to get the point as I described earlier. Add the newly translated and 

scaled contour (line) to the all_contours array: 

 

Note that this statement should be outside the “for point in line” loop, as you only want to add 

this line to all_contours once, after it has finished being modified. 

It should look like: 



 

Now we have an array, all_contours, filled with lines on our main image that were found in 

different image pyramid levels and different sliding windows. 

Now, I have the following code: 

 

Which prints out all the points in the first contour (line) in all_contours which is useful for 

debugging, draws each line onto the image and displays it, then waits for a keypress. It looks 

like: 

 



This is very ugly, but actually very accurate. The reason why some shapes were not 

detected is because we did not use the inverse of the binary thresholded image. Were we to 

use both, all shapes should be detected. 

The overlapping contours are caused by the sliding window covering only part of a shape. 

For example, if the sliding window were at this position, only covering part of this rectangle: 

 

It would draw a contour akin to the red line, covering the edge of the screen. This can be 

dealt with using nonmax suppression. An implementation of NMS can be found in SART’s 

version of HOGUtils.py, if you’d like to look into it further. 


