
s

SEMI-AUTONOMOUS

RESCUE TEAM
Team Description Materials

Matthew Williams, Jack Williams, Aaron Maggs, Ryan Ewyk, Riley Cockerill
contact@sfxrescue.com

Logistical Information

Team Name Semi-Autonomous Rescue Team

Organisation St Francis Xavier College, Florey, ACT

Country Australia

Mentor Gerard Elias

Contact Person 1 Graham Stock

 Phone: +61 417 439 452

Email: Graham.Stock@sfx.act.edu.au

Contact Person 2 Matthew Pham

 Phone: +61 420 760 341

Email: Matthew.Pham@sfx.act.edu.au

Website https://www.sfxrescue.com

1.0 Abstract

Figure 1 - The Semi-Autonomous Rescue Team, 2015 ð
2017

The Semi-Autonomous Rescue Team

(herein known as the S.A.R.T.) (Figure 1) is a
small group of Robotics and Information

Technology enthusiasts formed in late 2015

with the intent of creating a Robot capable of

competing in the 2016 Rapidly Manufactured
Rescue League (RMRL) at RoboCup in

Leipzig, Germany.

The project started with the basic Robot
design and specifications supplied by Curtin

University in Western Australia. The idea was

to use this as a starting point onto which teams
could innovate and rework into their own

Robot. The original S.A.R.T. Robot consisted

of the basic chassis design from Curtin

University known as the “Emu Mini 2”, paired
with a Raspberry Pi B+ and Dynamixel AX-

12A servo motors. Over the past eighteen

months, the initial design has transitioned to a
fully custom designed and 3D printed chassis,

an Intel NUC to replace the Raspberry Pi as the

main control board, an Arduino Nano for

collecting sensor data and an oCam 5
megapixel USB camera for streaming the

Robot’s point of view to a Control Panel

Interface over enterprise grade Wi-Fi. With

these improvements, the team has experienced
great success in competition, including:

¶ Tied 1st Place – Rapidly Manufactured

Rescue League, RoboCup 2016,

Leipzig, Germany

¶ 1st Place – Rapidly Manufactured

Rescue League, RoboCup 2017,

Nagoya, Japan

¶ Open Source Award – Rapidly

Manufactured Rescue League,

RoboCup 2017, Nagoya, Japan

2.0 Introduction

After forming in late 2015, the Semi-

Autonomous Rescue Team entered its first

competitive event in 2016 at RoboCup in

Leipzig, Germany. The Robot’s original design
was based on the specifications and design

supplied by Curtin University in Western

Australia for the Emu Mini 2. This design was
improved before the competition to include

streaming camera footage from a Raspberry Pi

Camera to a computer and controlling the

Robot itself over a short-range Bluetooth
connection using a PlayStation 3 controller.

The camera stream enabled the remote

operation of the Robot when the operator does
not have a direct line of sight, or, in the case of

RoboCup, when the operator cannot look at the

Robot while competing.
One of the major issues with the Robot

while competing in Germany was the latency of

the video stream due to the massive congestion

in the wireless radio environment – the delay
made it difficult to navigate the Robot through

the courses accurately. The congested wireless

environment inspired a greatly improved Wi-Fi
network utilising an industrial grade Access

Point (AP). Implementation of such a bulky

device would require an enclosure, as well as a

mailto:Graham.Stock@sfx.act.edu.au
mailto:Matthew.Pham@sfx.act.edu.au
https://www.sfxrescue.com/

computer to control it, so a Control Panel with

a mini PC, AP, Uninterruptable Power Supply
(UPS) for the Power over Ethernet (PoE) and

related peripherals was constructed. The UPS

also allows the Control Panel to be portable so

the Robot can be operated in remote conditions
or without access to stable power. Observing

the performance of other Robots at the

competition inspired changes to the Robot
itself. One such improvement was to modify

the chassis for upgraded internal components

arranged in such a way that the space inside the
chassis was used more efficiently by the more

powerful hardware.

After observations of the Robot’s

performance and the performance of other
teams in the RoboCup 2017 competition, it was

concluded that a Robot performs better with a

longer wheelbase and larger wheels, up to a
point. Having an excessively long wheelbase

limits the Robot’s mobility in the courses, and

the maximum size of the wheels directly
correlates with the length of the wheelbase.

Other improvements to the software side of the

Robot’s operation include real-time motion

tracking and image recognition as well as more
accurate temperature and distance

measurement, as the current temperature sensor

can only reliably indicate a dramatic change in
temperature rather than the quantitative value.

The Infrared (IR) distance sensors cannot seem

to be configured to return an accurate

measurement that makes sense. As for the
Robot’s movement, the fine control over

direction and speed afforded by the Control

Panel was helpful in navigating through the
courses. The improved controls allow the

operator to drive the Robot efficiently through

a course or turn it around by flipping over
against a wall to travel in the opposite direction

without having to spin on its axis in a confined

space.

3.0 System Description

3.1 Hardware

3.1.1 Robot

3.1.1.1 Chassis Design
The physical design for the Robot went

through nineteen different iterations of the

chassis and wheels in order to make it suitable

to be rapidly manufactured on commercially

available 3D printers.
The basis of our original design

objective of creating a Robot chassis for this

competition was to make something modular,

so that different components could be swapped
out if broken or if the use case called for a more

specialised part. Everything was to be self-

contained and capable of being put together like
Lego, with modules attaching with a universal

‘snap in’ mechanism. After a few prototypes

were designed and 3D printed, it was concluded
that while the Robot was modular, the physical

dimensions were too large to fit in the maze.

Additionally, the singular point of contact for

the snap in connector was not robust enough to
withstand what we would consider normal use.

The additional parts to 3D print drove up the

manufacturing time and cost. Overall we
determined that, as a proof of concept,

modularity on this scale was impractical for

real-world applications.
Starting from scratch, we looked at the

original design of the Open Academic Robot

Kit’s Emu Mini 2. Considering its pros and

cons, we realised that the form factor was ideal
for navigating through the competition maze

and the wheelbase allowed it to turn on the spot.

With all the new hardware we intended to use
in the Robot, a total redesign was required to

ensure everything could fit in a similar footprint

to the original Emu Mini 2. Simulated test fit s

were run on the nineteen different prototypes of
the current chassis model, which involved using

3D models of the components (such as the Intel

NUC, SSD, Camera, Arduino and battery) to
verify that everything would fit inside the

smallest package possible.

While the basic rectangular design was
inspired by the Emu Mini 2, some of the

original features were omitted in favour of other

features that we considered more important.

One of the more notable modifications was the
exclusion of a mechanical arm so that the Robot

was symmetrical on both top and bottom. The

rationale behind this decision was that the
Robot could drive up against a wall and flip

over. In our testing, we discovered that this was

quicker than turning around, especially when
the dimensions of the competition maze are too

small for the Robot to spin on its axis. The

other notable change from the original Emu

Mini 2 was the versatility of the servo mounts.
Servos on the Emu Mini 2 could only be

mounted in a single orientation due to the screw

holes and power/data cable pass-through holes

(Figure 2).

Figure 2 - The original servo mounts (from the Emu Mini

2) only allowed the servos to mount in a single
orientation.

The Emu Mini 2 design differs to the

design that we created, which had a single,
larger cable pass-through hole and more screw

holes where the servos mounted, giving us the

flexibility to orient the servos however we
wanted (Figure 3).

Figure 3 - The new design for a dual orientation servo

mount. The only shortcoming of this design is the
reduced strength of the chassis as a result of the

rectangular holes in the side s where the greatest

twisting forces are experienced .
Our design gave us three options for

wheelbase length potentially having a short,

medium or long wheelbase by simply changing

the orientation of individual servos.
Unlike the Emu Mini 2, we did not add any

extra holes or unnecessary embossed text as

they provided an entry point for foreign objects,
increased print time and made it more likely to

fail.

The final chassis consisted of a

rectangular box of dimensions 221.10mm long,
150mm wide and 50mm high (Figure 4).

Figure 4 - (Top View) The dimensions of the final Robot
chassis.
It had cutouts for attaching the servos at two

orientations, and a lid that prevented the
internal components from falling out or foreign

objects from entering the chassis. The physical

size was the smallest that we could make it,

given that we had to fit more powerful and
larger hardware into it – mainly the small-form-

factor computer, SSD, power delivery, battery,

camera and the multitude of sensors, compass,
accelerometer, gyroscope and Arduino.

3.1.1.2 Internal Components (Figure 5)

Figure 5. The internal components of the Robot.

The main computational component of
the Robot (i.e. The brain) is the Intel

NUC5CPYH which features a 1.6GHz dual

core Intel Celeron N3050 processor. The more

powerful brain (compared to the Raspberry Pi
we used in 2015/2016) allows for high frame

rate, high bitrate and high resolution streaming,

which also takes advantage of the superior and
interchangeable Wi-Fi antenna on the NUC

compared to the fixed antenna on the Raspberry

Pi.
The sensors (Infrared distance,

gyroscope, compass, accelerometer) connected

to an Arduino Nano which, like the camera was

connected to the Intel NUC via USB. This

means swapping out different components uses
a backwards compatible, universal standard

connector, and, is what we used to interface the

servos with the NUC via a USB2AX.

Power was supplied by a lithium
polymer battery with a capacity of 1.3 Ah,

giving around an hour of continuous use,

powering the servos and NUC while streaming
to a single client. The limited power supply was

one reason that the NUC5CPYH was chosen, as

it had a good power consumption to
performance ratio, whereas a Pentium, i3 or i5

model would require a larger capacity battery to

run for the same period of time.

The camera was the oCam 5MP USB
3.0 Camera. Although it has the capability for

image processing built in, we only used it for

streaming. In the future, some image
processing can be offloaded to the camera

rather than the NUC or Control Panel.
Under our open source philosophy,

everything was made free to use under the

GNU-GPL license on the 3D model sharing

website Thingiverse. Also uploaded to

Thingiverse was editable versions of the
wheels, chassis and belts so other people can

use the S.A.R.T designs as a starting point for

their own Robots or as a source of inspiration
or modification.

3.1.2 Control Panel

The idea behind the S.A.R.T. Control

Panel is that everything needed to operate the

Robot is contained within a single package
(Figure 6).

Figure 6 - A conceptual render of the S.A.R.T. Control

Panel, created to aid the communication of the idea

before construction began.

Inside the Control Panel is an

Uninterruptable Power Supply (UPS), Xirrus

XR620 Access Point, BreezeLite Fanless Mini

PC, AOC widescreen LED monitor and a
Microsoft wireless keyboard and trackpad all

contained in a Pelican carrying case (Figure 7).

Figure 7 - The S.A.R.T. Control Panel showing all the

internal components.

The BreezeLite Mini PC was chosen

based on its low power consumption and

variety of I/O, solid state flash storage, small
form factor and its passive cooling capability.

It features a quad core Intel Atom x5-Z3250

processor, part of the lowest power consuming
skew of Intel’s mobile processors at only 2W of

typical power consumption. The solid state

flash storage meant that there were no moving

parts that could be damaged if the Control Panel
experienced a shock, unlike hard drives where

a significant shock or drop can cause the head

and spinning platter to misalign and, as a result
not function correctly or at all. The small form

factor of the BreezeLite Mini PC meant that it

could fit inside the case, leaving enough room
for the Access Point, UPS and power delivery

apparatus.

The Xirrus XR620 Access Point was

chosen for our applications based on its
customisability and reliability, providing a fast,

stable connection despite a considerable

amount of external wireless interference.
Despite the fact that it is a higher end Access

Point and being rather expensive, it was given

to us by our school so we would not have any

issues with Wi-Fi unreliability, range or
dropped connections.

The decision of the specific model of

UPS we chose for the Control Panel came down
to how long the battery would last based on our

workload within the size constraints of the

Pelican case. In Japan, we found having a UPS
immensely helpful to convert 110 volts to the

240V Australian standard that we required for

everything to work properly, with the aid of a

transformer.

The screen we used was a generic

1600x900 resolution display that was chosen
simply because it would fit inside the lid of the

case and because it had a VGA connector which

we used to connect it to the BreezeLite Mini

PC. The advantage of using a display over
VGA rather than HDMI (also supported by the

BreezeLite) was that VGA cables have screws,

so the cable would not come loose from the
screen or BreezeLite during the competition.

The wireless keyboard used to control the

BreezeLite Mini PC (and subsequently the
Robot) was a generic Microsoft device chosen

mainly for its slim form factor (allowing the

Control Panel lid to close without having to

remove the keyboard) and the included
touchpad, negating the necessity for a mouse.

The operator can simply use a finger to point

around the screen, whereas a mouse requires
operators to potentially have to deal with

uneven or poor reflective surfaces that can

cause tracking problems with a traditional
optical mouse.

Despite our use of a dedicated Control

Panel, any device can be connected and used to

operate the S.A.R.T. as long as the Robot has
been previously instructed to automatically

connect to the same network as the device used

to control it. This is because the Control
Interface is hosted on the Robot’s local web

server, and all the user needs to do is enter the

Robot’s IP address in the URL bar of their

browser and have access to the control,
streaming and data collection functionality.

3.2 Software

3.2.1 Robot

Ubuntu 16.04 LTS was used as the

Robot’s operating system. It was chosen as a
lightweight and more open alternative to

Windows operating systems, and as a friendlier

alternative to other Linux distributions. Its
x86/64 architecture made it capable of running

on the desktop-grade hardware in the Intel

NUC. Choosing a free operating system also
allows others to replicate our project without

having to pay for an operating system such as

Windows.

The code we run on top of Ubuntu is
coded in Python, chosen because of its

versatility, ease of use and popularity. Some

additional Python libraries were installed, such
as Pyax12, AsyncIO, WebSockets and

OpenCV.

There are 6 main Python scripts run on

the S.A.R.T.
motion_tracking_filtered.py is a

motion detection and tracking script. It takes

frames from the video stream and analyses

them for objects that change position over time.
If detected, it bounds the object in a box for easy

identification.

performance_party_data.py collects
system performance data using the Python

library psutil. The information is formatted and

sent to the Control Interface via WebSockets,
where it undergoes further formatting and is

displayed in the system monitoring section.

qr-read.py is a QR code reader that

takes frames from the video stream and displays
decoded text in almost real time.

sensor_party_server.py is a simple

WebSocket server that listens for sensor data
from the Arduino Nano’s serial port. The data

is formatted and sent on to the Control

Interface.
servo_party.py contains a WebSocket

server that waits for instructions from the

Control Interface. When a key press has been

received, the instructions for the appropriate
action are sent to the Dynamixel servos.

servo_party_data.py is a WebSocket

server that reads temperature and supply
voltage data from every connected servo. The

data is formatted and sent to the Control

Interface, where it is used to calculate battery

life statistics and report servo temperatures to
the operator.

In addition to the servo control scripts

and software, the Robot runs Motion, a free
software package designed for home

surveillance and motion detection. It is

important to make the distinction between
motion detection, where the program simply

detects a change in pixels, and motion tracking,

where the program is intelligent enough to track

something throughout the scene and interpret it
as a single object. We had originally used a

branch of Motion specifically for the Raspberry

Pi called MotionPi, so when we migrated to the
NUC in late 2016, we continued to use Motion

(albeit the master branch rather than the Pi-

specific version). We chose to continue with
Motion because of our experience and because

the Control Interface was already working with

the software.

The Robot runs the popular web server
Apache 2 to serve the Web Control Interface.

The interface was originally written in PHP,

CSS and HTML. With the recent adoption of

WebSockets for communication, PHP has been
phased out and replaced with JavaScript for the

majority of communication and processing.

Like our 3D models, all our code was

made free to use and edit under the GNU-GPL
license on GitHub, where we encouraged other

teams to contribute to or find inspiration in our

solutions.

3.2.2 Control Panel

The Control Panel (in the context of
software) can be defined as any device that

connects to the S.A.R.T. Robot and can load the

interface in a web browser. Such a device can
run any operating system (mobile devices may

work theoretically, given a keyboard is paired

with the device, although this is untested). The
officially supported browser is Google Chrome,

which allows the user to use all features of the

Robot. Mileage may vary when using other

browsers.
Additional functionality may be

unlocked by using the official S.A.R.T. Control

Panel, as it includes local software for extra
features. The official Control Panel runs

Windows Server to manage a DHCP server to

assign IP addresses to devices connecting via

the Xirrus AP, however, any operating system
will work if a DHCP server is installed. The

official Control Panel also includes a default

gateway system with information that aids the
user in setting up the Robot. A built-in IP

scanner allows the user to check what IP the

Robot is connected to in the event that the
DHCP server is not functioning.

No other software is necessary on the

Control Panel, as the interface itself is hosted on

the Robot’s local web server.

3.3 Communications

The backbone of our network is the

industrial grade Xirrus XR-620 Access Point,

with hundreds of configuration options

allowing us to edit our network as we please.
The basic communication settings we used

during the RoboCup 2017 competition were as

follows:

Band: 5GHz

Wi-Fi Mode: A
Channel: 44

Channel bonding: Disabled

Antenna count: Up to 4.

The settings we used in the competition

are by no means the limit of our access point’s
capability. It is capable of running 2.4GHz to

5GHz Wi-Fi bands in modes ranging from ac,

a, b, g and n and delivering transfer speeds of

up to 1.7Gbps to 240 individual clients. It is
also capable of filtering out other Wi-Fi

networks to ensure that it is the dominant

network, which could be useful in a congested
area. It can dynamically change channels

depending on the congestion and traffic and

also can bond those channels together for a
more stable and reliable connection for greater

range and signal strength.

The Control Panel runs a DHCP server

that has allowed us to connect devices to the
network at random. This also means we do not

have to manually assign a device an IP address

as the DHCP server does that automatically.
Another advantage this gives us is to set

reserved IP addresses. This is done to lock the

Robot to one IP address that is always assigned
to the same device. The static IP address means

that scripts that communicate between the

Robot and Control Panel do not have to be

updated with new IP address variables.
The advantage of using an industrial

grade access point is that with all the bandwidth

is concentrated on a single client, meaning that
it is less likely to experience an outage.

Because access points of this class are designed

to be reliable in congested areas, the benefit to

using this access point is because it helps
guarantee a more stable, reliable and stronger

signal, even in a congested environment similar

to the one experienced at RoboCup 2017.

3.4 Human-Robot Interface

First responders in a rescue situation
rate ease of use highly on what they want from

a confined space rescue Robot. They need to be

able to control the Robot with minimal coding
experience and prior training. This design

philosophy was incorporated into the S.A.R.T.

from day one, with the human-Robot interface
built from the ground up with ease of use in

mind.

The culmination of this effort is a web-

based Control Interface that can be used on any
device with a compatible web browser. It is a

complete front end experience that removes the

operator from the bare bones of the operating
system via a sleek interface (Figure 8).

Figure 8 - The main page of the S.A.R.T. Control
Interface

The WASD keys, the most popular left-

hand key mapping for arrow keys, are used to

control the Robot’s basic movement. The
number row (1 through to 0 on the keyboard) is

used to adjust the Robot’s speed in increments

of 10%, affording fine control to balance
torque, speed and momentum during a mission.

A keystroke collection service runs in the

background, meaning the operator can use these
controls while viewing any number of

draggable and rearrangeable windows (Figure

9). This ability to choose what is displayed and

where allows the operator to see only the
information they want on the screen, with no

distractions.

Figure 9 - A possible use case of the rearrangeable

windows. In this case, the operator chose to view the

raw data, video stream and log at the same time.
The Control Interface features 10 main

distinctive features.

The SSH Terminal (Figure 10),
powered by ShellInABox, gives the operator

complete access to the S.A.R.T’s Ubuntu

operating system. This can be useful for many

things from killing unresponsive processes to
monitoring activity on htop.

Figure 10 - The SSH console running the process monitor

"top".

The Video Stream (Figure 11) is

powered by a highly customised software
package called Motion. Our modifications

disable the motion detection (not motion

tracking) features for faster processing, and

modify the quality to size ratios for optimal
streaming performance. The result is a latency

free, high-quality video of everything the Robot

can see, streamed directly to the operator in real
time.

Figure 11 - The video stream shows the operator what

the Robot can see in the middle of a mission.
Audio Communication (Figure 12) is

a relatively new feature, only implemented

during RoboCup 2017. A Text to Speech

system allows the operator to talk to a victim
nearby the Robot, while the Speech to Text

system allows the victim to talk to the operator.

In the future, this system will be further
streamlined using the VoIP protocol to allow

bi-directional communication similar to a

phone or Skype call.

Figure 12 - The audio feature allows the operator to

communicate with the victim and vice versa.
IR Distance (Figure 13) is a planned

mapping feature that makes use of the 4 infrared

distance sensors on each side of the Robot. It

shows the operator the distance between the
Robot and the nearest obstacle.

Figure 13. The IR sensor display indicate s the distance
to the nearest obstacle on each side of the Robot.

The Raw Data Output (Figure 14)

window displays various sensor and servo
statistics in text form. This can be used for

anything from checking if an individual servo

is overheating to reading the temperature of an
object in front of the Robot.

Figure 14 - The Raw Data system shows vital Robot
statistics and raw sensor input.

System Logging pulls data from the

directory /var/log and displays it in a scrolling
window (Figure 15). It is the best way to keep

track of events happening on the Robot at an

operating system or kernel level.

Figure 15 - The log displaying information from
/var/log/ syslog

FTP File Access, powered by

MonstaFTP, allows the operator to quickly edit
files on the Robot using an intuitive web

interface (Figure 16).

Figure 16 - The Web FTP panel, powered by MonstaFTP.

Power Options let the operator quickly

and safely reboot the S.A.R.T Robot, or power

it off completely (Figure 17).

Figure 17 - Power options let the operator turn off the
Robot without having to know Linux commands.

The interface dedicates the lower

portion of the page to System Monitoring

(Figure 18). This section keeps track of RAM

and CPU usage, CPU temperature, battery

statistics and uptime to allow the operator to

ensure the S.A.R.T. is functioning normally.

Figure 18 - The lower section of the interface, tracking

the NUC and battery statistics.
The Local Help Documentation

allows the operator to quickly troubleshoot a

wide range of possible faults on the fly (Figure

19). This means there is often no need to
replace the Control Panel and Robot if

something goes wrong, saving valuable time in

a rescue situation. All help documentation is

local so that operators do not need to research
the problem on an internet connected device.

Figure 19 - The main page of the help documentation,

featuring an extensive list of articles covering possible

faults in each system.

Like the rest of the S.A.R.T. project,

the entire interface was made open source

during its development to allow other

developers to contribute and to implement it in
their own projects.

4.0 Application

4.1 Setup of Robot & Operator Station

The setup process of the Robot and

Control Panel was designed to be as simple as
possible. As mentioned previously, first

responders in a rescue situation rate ease of use

highly for Robotic assistance. In a high stakes
environment, they need something that can go

from packed to deployed in a matter of minutes.

One of our core design philosophies for user

experience was simplicity, meaning the setup
process we demonstrated in Japan is

remarkably straightforward and intuitive.

Firstly, all devices in the Control Panel
are powered on simultaneously with a single,

clearly visible power button. The operator can

then power on the S.A.R.T. Robot. After the
boot sequence, it automatically connects to the

waiting S.A.R.T. network. If the operator

knows the IP address of the Robot, they can

navigate to the Control Panel and start using the
Robot immediately. Otherwise, they can use

the IP scanner built into the default gateway to

find the Robot and continue as usual with
minimal time lost.

In Japan, control scripts had to be

started manually using the SSH console on the

web interface. However, to simplify the
process even more and to satisfy the

overarching design criteria of an easy-to-use

interface that requires minimal prior training to
use, these scripts will run automatically on start

up in the future.

4.2 Pack Up of Robot & Operator Station

If the operator has already recovered

the Robot, the power-off process has three
steps. The Robot can be safely shut down using

the power options in the interface. The Control

Panel can then be turned off in the usual way
(Start > Shutdown). Once the device has been

safely powered off, power can be cut by

depressing the UPS power button. Power can

be cut to the Robot using the switch (Figure 20).

Figure 20 - The 3 -step power -off process.

Additional pack up steps may include
placing the Robot in its foam lined Pelican carry

case, as well as placing a protective foam shield

between the monitor and keyboard of the
Control Panel before closing the case.

Optionally, the battery in the Robot can be

removed, although assuming it is not

completely flat it is safe to leave it in
indefinitely.

4.3 Mission Strategy

The Rapidly Manufactured Rescue

League (RMRL) is a sub-division of RoboCup

Rescue. It is a research competition that
encourages students to develop innovative

solutions to open response Robotics problems

in Search and Rescue, Hazardous Materials
Response, Explosive Ordnance Disposal and

Tactical Reconnaissance

(oarkit.intelligentRobots.org). The RMRL
brings this competition to high schools and

undergraduate university classrooms, focussing

on the challenges associated with operating

small Robots in confined spaces and low-cost
prototyping, electronics and sensors to

ultimately lower the barrier of entry into

Robotics research.
The specific strategy employed by the

S.A.R.T. involves a careful analysis of each

course to decide on the best route. For example,

in the specific courses of stepfield and elevated
ramps, the strategy for navigating was different

for the dirt or gravel pits. This strategy

involved ‘hugging’ the left wall (when
observed from behind), then executing a 90-

degree turn and driving over the elevated

section, as opposed to driving diagonally over
the elevated section as this would often result in

the Robot becoming beached. If this was the

resulting eventuality, our solution to becoming

unstuck was to rapidly change the direction of
the servos, effectively ‘rocking’ backwards and

forwards to build up enough momentum to

‘fall’ off the perch where the Robot was stuck.

http://oarkit.intelligentrobots.org/

A different strategy was employed for

the dirt and gravel pits, because as the Robot is
relatively light and the smooth wheel design

allowed for the Robot to ‘skim’ along the top of

the surface without sinking in. At the end of

each course, the Robot would drive up against
the wall and execute a flip instead of turning

around, which, in our experience was faster and

more efficient, reducing the likelihood of
becoming stuck perpendicular to the direction

of the course.

These operation decisions were the
result of careful experimentation with the

courses and from previous experience

controlling the robot.

4.4 Experiments & Testing

Much of the experimentation and
testing phase occurred early in the development

of the physical design and software

development. Many of the experiments

conducted exposed new problems that had to be
solved for the changes made as a result of the

experimental findings to be effective.

4.4.1 Experimental Design
It was through experimentation that it

was concluded that a vertically symmetrical

Robot (the same on the top and bottom) would

be useful in navigating through confined
spaces, as a 180-degree turn was possible by

driving up against a wall. Executing one of

these turns resulted in the controls swapping
and the stream upside down on the operator’s

end, so we had to patch the Control Interface to

include a function that flips the controls and
stream footage.

4.4.2 Materials Testing

The usefulness of belt prototypes

printed in the NinjaFlex flexible 3D printer
filament were tested using a Pasco Scientific

Force Sensor. This tool was used to measure

the force (in Newtons) required to break the
flexible filament.

The force sensor only took

measurements up to 55 newtons, and the small
sample of NinjaFlex did not break, even after

multiple tests (Graph 1).

Graph 1 ð The results of 6 stretch tests over a period of

30 seconds. The readings stop at 55N as it is the

maximum value supported by the sensor.

Additional tests were used to examine

other properties of the material, such as how

well it retains its flexible elastic properties after

stretching (Graph 2).

Graph 2 - Repeatedly stretching the band to 12.5cm to

test how elasticity would reduce after repeated strain.

Apparent is a moderate negative relationship as the

force required to stretch the band to the same length
reduced over repeated tests.

4.4.3 Wireless Connection Range

Multiple experiments were run to
verify the maximum range of the Xirrus WiFi

Access Point. This was done by connecting to

the S.A.R.T. network using a laptop (which had
the same wireless network adapter as the

Robot) and walking in a straight line until the

signal was completely lost. The average

distance as calculated from the tests was around
90m in a crowded Wi-Fi environment which

was thought to accurately simulate the

conditions at the competition. Fortunately, this
assumption turned out to be correct as we were

able to operate wirelessly at ranges of over 50

metres during competition in Japan.

4.4.4 Streaming Reliability
The reliability of streaming video

footage was tested by loading the Robot with

numerous streaming clients to see at what point
the stream cut out or the bandwidth of the

Access Point was saturated. Having a low

powered dual-core processor in the NUC, the
stream began to drop frames, stutter and cut out

after more than six clients were connected. The

effects of this were exacerbated as the range

increased, but considering only one or two

clients would need to be connected to the Robot
at any one time, the range and stream quality

would remain normal.

4.4.5 Battery Duration Testing

The usable time given by the UPS
when the Control Panel is in the ‘untethered’

mode (i.e. not plugged in) was tested by

building the power network required for the
Control Panel to function. The worst case

scenario was simulated by initiating a synthetic

load on the BreezeLite Mini PC and saturating
the Access Point with a large file transfer over

the Wi-Fi network using FTP. The results gave

a minimum usable time of around 75 minutes.

The battery performance of the robot was also
tested using a 1300 mAh LiPo battery. A series

of tests determined a maximum run time of 90

minutes. We used the information gathered in
these tests to ensure enough time was left

between runs to swap batteries hourly during

competition.

4.4.6 Experimenting at RoboCup

The setup day of the competition in

Japan was dedicated to testing the Robot in the

competition mazes with the various wheelbase
lengths. It was discovered that the long

wheelbase tended to get the Robot stuck on flat

surfaces in courses such as the stepfield, to
which we thought that shortening the wheelbase

would have a positive effect. After removing

everything inside the Robot and reciprocating

the orientation of the servos, more tests were
conducted with the short wheelbase. It was

concluded after a short period of testing that,

while the short wheelbase provided better
performance in stepfield, the performance in

every other course decreased. It was therefore

decided that the longer wheelbase should be
used for the competition as it was the most

compatible with the majority of the courses in

the competition.

4.5 How the particular strengths of the team

are relevant to applications in the field

Each member of the S.A.R.T. has their

own defined roles and skill set. The different

strengths they possess (Python

coding/programming; web developing for front
and backend; 3D modelling and rendering;

network configuration and administration;

building/construction; documentation) can be
applied to the field. For example, programming

in Python and web development for front and

backend ultimately gets the Robot moving and

sending the data back for analysis via a web
server hosted on the Robot itself. 3D Computer

Assisted Design (CAD) and rendering produce

the images and simulations of the Robot’s use

cases, as well as the physical design. On top of
all that, a viable network must connect the

Robot to the Control Panel despite the

difference in hardware and software on each
device as created by individual team members.

These disciplines require teamwork and

communication due to the different people
working on the same project having different

problem-solving methods different ideas for

implementing solutions to the same problem.

This reflects a real world engineering
process wherein the team who designs the

product may not necessarily be the same team

that manufactures the product, who in turn may
not be the same team who programs the product

or tests the product.

Detailed documentation is necessary in
this case, as for the reasons outlined above.

Every member of the team is experienced in

documenting their ideas and processes through

the website blog to communicate the design and
updates through a medium that the entire team

can consult readily with ease. It also allows for

the easy sharing of multimedia content to
explain concepts to not only the team but also

the wider open source community.

5.0 Conclusion

5.1 What the team has learned so far

So far through the process of designing

and building the many prototypes and iterations

of the Robot, the members of the S.A.R.T. have

all grown more skilled in their respective areas,
leading to more sophisticated and streamlined

programs and designs. As a result, we can

anticipate potential problems before they occur
and amend them before they become a major

issue. Specific examples include wireless

network optimisation, computer to computer
communication via browser based web

applications on different operating systems, 3D

design and rendering, 3D printing, image

manipulation via a remote video stream,
controlling servos with a variable speed

function using key letter ID numbers sent over

a wireless network and building a cheap,
rapidly manufactured complete system in a

small form factor.

5.2 What is planned between now and the

competition in 2018

As we, the current members of the

S.A.R.T. are in our final year of college, we
plan to find new members who wish to continue

the development of this project. However, all

existing members have expressed interest in
continuing to work on the project, and

potentially act as mentors to the students who

will take over and continue to improve the

project before RoboCup in Canada in 2018.
To aid the continued development of the

project, the team has come up with some new

ideas for these students to work on in 2018.

5.2.1 Update System
Useful for when the S.A.R.T. has been

deployed in the field. This system will notify
the operator of a S.A.R.T. Robot when there are

software updates available. It should have the

ability to automatically download and install

the updates if the operator approves the update.

5.2.2 Audio Communication

Set up a streamlined audio

communication system using the VoIP protocol
rather than two separate text-to-speech and

speech-to-text systems. This should allow the

operator to talk to a victim directly, much like a

phone or Skype conversation.

5.2.3 Browser Cross-Compatibility

Implement support for the S.A.R.T

Control Interface on other popular browsers,
such as Firefox and Internet Explorer.

5.2.4 Expand the Versatility of the Control

Panel
Create a custom battery for the UPS

that utilises the space inside the Pelican case

more efficiently. With the extra stored power,

implement a LiPo charging system into the
Control Panel to allow Robot batteries to be

recharged straight off the UPS for an increased

run time in remote locations or when power is
not available.

5.2.5 Dynamic S.A.R.T. Network

Create a network that can be boosted to
cover a larger range by multiple Control Panels.

Allow multiple Robots to be connected to the

dynamic network at the same time, and let each

operator select a specific Robot to control. This
reflects a real world rescue situation where

multiple cheap Robots would be used at the

same time to cover more ground.

5.2.6 Design Alterations

Based on the observations of the

current S.A.R.T team from RoboCup 2017, the

new team can make informed decisions on

physical chassis and wheel design changes to
better navigate courses.

5.2.7 Change the Main Computational

Component

Change the main computational
component from a dual-core Intel NUC to the

UDOO X86 ULTRA. Although more

expensive than the NUC, it features a quad core
processor and 8GB of RAM and is capable of

running any x86 based operating system,

including the Arduino™ 101 world, including
all the sketches, libraries and the official

Arduino 101 IDE. It has General Purpose

Input/Output (GPIO) pins for attaching sensors

directly to the board itself without having to
have an Arduino Nano as an intermediary

between the NUC and the array of sensors.

5.2.8 Migrate to Ubuntu on the Control

Panel

The Control Panel is currently using a

free trial of Windows Server because the
BreezeLite Mini PC only officially supports

Windows based operating systems.

Unfortunately, the free trial is about to expire,

so a different solution needs to be found.

5.2.9 Building a Test Maze

Basing the design off the maze used in

Japan, the team could test their Robot at home
in the actual competition environment.

The new team in 2018 will bring many
new ideas to the table and may choose to

implement all or none of these features. These

are only our suggestions based on our 3 years
of development, testing and competition

experience.

6.0 References

Adafruit 2016, PowerBoost 500 Charger - Rechargeable 5V Lipo USB Boost @ 500mA+, viewed 19

April 2016, <https://www.adafruit.com/product/1944>.

Cyber Power Systems, Inc. 2017, CyberPower Value1000EI, viewed 24 February 2017,
<https://www.cyberpower.com/au/en/product/sku/Value1000EI>.

Ewyk, R 2016, BatView® Sonar Viewer, viewed 20 May 2016,

<https://drive.google.com/file/d/0B06CRDwuKGLLLXBEN0Zyc3JnSzA/view>.

Friends-of-Fritzing foundation 2017, Fritzing, viewed 17 July 2017, <http://fritzing.org/home/>.

GizmoSphere 2014, Gizmo 2 Specifications, viewed 5 July 2016, <http://www.gizmosphere.org/wp-

content/uploads/2014/11/4531_Gizmo2_ProBRIEF_FNL.Element14.pdf>.

Grinberg, M 2013, How to build and run MJPG-Streamer on the Raspberry Pi, viewed 3 July 2015,

<https://blog.miguelgrinberg.com/post/how-to-build-and-run-mjpg-streamer-on-the-raspberry-pi>.

Gus 2015, Build a Raspberry Pi Webcam Server in Minutes, viewed 20 May 2016,

<https://pimylifeup.com/raspberry-pi-webcam-server/>.

Intel 2016, Intel® Centrino® Advanced-N 6205, viewed 14 September 2016,
<http://www.intel.com/content/www/us/en/processors/centrino/centrino-advanced-n-6205-

brief.html>.

Intel 2016, Intel® NUC Board NUC5CPYB and Intel® NUC Board NUC5PPYB Technical Product

Specification, viewed 2 March 2017,
<http://www.intel.com/content/dam/support/us/en/documents/boardsandkits/NUC5CPYB_NUC5PPY

B_TechProdSpec11.pdf>.

Intel 2016, Intel® NUC Kit DN2820FYKH, viewed 9 September 2016,
<http://ark.intel.com/products/78953/Intel-NUC-Kit -DN2820FYKH>.

Lavrsen, K 2016, Motion - Web Home, viewed 20 May 2016,

<http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome>.

Monsta Limited 2016, Monsta FTP Open Source PHP File Manager, viewed 20 May 2016,
<https://www.monstaftp.com/>.

NinjaTek 2017, NinjaTek High Performance 3D Printing Materials, viewed 2 June 2017,

<https://ninjatek.com/>.

PASCO Scientific 2017, Wireless Force Acceleration Sensor, viewed 11 June 2017,
<https://www.pasco.com/prodCatalog/PS/PS-3202_wireless-force-acceleration-sensor/index.cfm>.

PC Case Gear 2016, BreezeLite SN3-X5 Z8300 Windows 10 Mini PC, viewed 13 September 2016,

<https://www.pccasegear.com/products/36378/breezelite-sn3-x5-z8300-windows-10-mini-pc>.

Popov, D 2014, PHP on Raspberry Pi, viewed 20 May 2016, <http://www.raspberry-pi-
geek.com/Archive/2014/07/PHP-on-Raspberry-Pi>.

https://www.adafruit.com/product/1944
https://www.cyberpower.com/au/en/product/sku/Value1000EI
https://drive.google.com/file/d/0B06CRDwuKGLLLXBEN0Zyc3JnSzA/view
http://fritzing.org/home/
http://www.gizmosphere.org/wp-content/uploads/2014/11/4531_Gizmo2_ProBRIEF_FNL.Element14.pdf
http://www.gizmosphere.org/wp-content/uploads/2014/11/4531_Gizmo2_ProBRIEF_FNL.Element14.pdf
https://blog.miguelgrinberg.com/post/how-to-build-and-run-mjpg-streamer-on-the-raspberry-pi
https://pimylifeup.com/raspberry-pi-webcam-server/
http://www.intel.com/content/www/us/en/processors/centrino/centrino-advanced-n-6205-brief.html
http://www.intel.com/content/www/us/en/processors/centrino/centrino-advanced-n-6205-brief.html
http://www.intel.com/content/dam/support/us/en/documents/boardsandkits/NUC5CPYB_NUC5PPYB_TechProdSpec11.pdf
http://www.intel.com/content/dam/support/us/en/documents/boardsandkits/NUC5CPYB_NUC5PPYB_TechProdSpec11.pdf
http://ark.intel.com/products/78953/Intel-NUC-Kit-DN2820FYKH
http://www.lavrsen.dk/foswiki/bin/view/Motion/WebHome
https://www.monstaftp.com/
https://ninjatek.com/
https://www.pasco.com/prodCatalog/PS/PS-3202_wireless-force-acceleration-sensor/index.cfm
https://www.pccasegear.com/products/36378/breezelite-sn3-x5-z8300-windows-10-mini-pc
http://www.raspberry-pi-geek.com/Archive/2014/07/PHP-on-Raspberry-Pi
http://www.raspberry-pi-geek.com/Archive/2014/07/PHP-on-Raspberry-Pi

Raspberry Pi Foundation 2016, Build a LAMP Web Server with WordPress, viewed 20 May 2016,

<https://www.raspberrypi.org/learning/lamp-web-server-with-wordpress/worksheet/>.

RoboCup Federation 2016, RoboCup 2017, viewed 9 September 2016,

<https://www.robocup2017.org/eng/index.html>.

ROBOTIS Inc 2016, Dynamixel AX-18A, viewed 13 September 2016,

<http://support.robotis.com/en/product/dynamixel/ax_series/ax-18f.htm>.

Sheh, R 2015, The Open Academic Robot Kit, viewed 4 May 2015,

<http://oarkit.intelligentrobots.org/wiki/doku.php>.

Sheh, R 2017, Controlling servos using the USB2AX V3.2, viewed 3 March 2017,

<http://oarkit.intelligentrobots.org/home/raspberry-pi/controlling-servos-using-the-usb2ax-v3-2/>.

Ultimaker B.V. 2017, Ultimaker Error messages, viewed 11 May 2017,

<https://ultimaker.com/en/resources/160-error-messages>.

Williams, J 2016, S.A.R.T Interface, viewed 20 May 2016,
<https://drive.google.com/file/d/0B06CRDwuKGLLVVRrei15Wk9jLTg/view>.

Xevelabs 2017, Product: USB2AX, viewed 3 March 2017,

<http://www.xevelabs.com/doku.php?id=product:usb2ax:usb2ax>.

https://www.raspberrypi.org/learning/lamp-web-server-with-wordpress/worksheet/
https://www.robocup2017.org/eng/index.html
http://support.robotis.com/en/product/dynamixel/ax_series/ax-18f.htm
http://oarkit.intelligentrobots.org/wiki/doku.php
http://oarkit.intelligentrobots.org/home/raspberry-pi/controlling-servos-using-the-usb2ax-v3-2/
https://ultimaker.com/en/resources/160-error-messages
https://drive.google.com/file/d/0B06CRDwuKGLLVVRrei15Wk9jLTg/view
http://www.xevelabs.com/doku.php?id=product:usb2ax:usb2ax

7.0 Appendix A - Components & Estimated Total Cost

Table 1 - Components & Estimated Total Cost ð Robot Only

Component Price

(USD)

Quantity Total

(USD)

Intel NUC5CPYH $122.36 1 $122.36

Corsair CMSO4GX3M1C1600C11 4GB (1x4GB) DDR3L

SODIMM

$39.20 1 $39.20

Samsung PM851 MZ-7TE128D 128GB SSD $64.00 1 $64.00

Dynamixel AX-18A $105.52 4 $422.08

oCam 5MP USB 3.0 Camera $96.16 1 $96.16

Arduino Nano $28.80 1 $28.80

Infrared Proximity Sensor - Sharp GP2Y0A21YK $11.16 4 $44.64

Triple-axis Accelerometer+Magnetometer (Compass)

Board

$11.96 1 $11.96

MLX90614ESF-AAA Infrared Temperature Sensor $23.42 1 $23.42

Plasti-Dip $26.40 2 $52.80

Ultimaker ABS 3D Printer Filament 1kg spool $32.00 6 $192.00

Quanum 12V-5A (7.2 - 25.2V) Dual Output UBEC $10.25 1 $10.25

USB2AX v3.2a $68.56 1 $68.56

0.5m USB 2.0 A male to 5-Pin Mini-B Lead $4.76 1 $4.76

0.5m USB A male to Micro-B Lead $4.76 1 $4.76

Turnigy Nano-Tech 1.3 Ah Lithium Polymer Battery $15.58 3 $46.73

Total $1,232.48

Table 2 - Components & Estimated Total Cost ð Control Panel Only

Component Price

(USD)

Quantity Total (USD)

Pelican PROTECTOR CASE™ Camera Case (1514) $229.66 1 $229.66

BreezeLite SN4-X5 Windows 10 Mini PC $279.20 1 $279.20

CyberPower Value GP 1000VA/530W [VALUE1000EI]

Line Interactive Ups

$138.40 1 $138.40

AOC E2070SWN 19.5in Widescreen LED Monitor $87.20 1 $87.20

Xirrus XR620 WiFi Access Point (inc. PoE Injector &

Ethernet Cables)

$460.00 1 $460.00

Microsoft All-In-One Media Keyboard $45.60 1 $45.60

HDMI to VGA + Stereo Audio Converter $22.36 1 $22.36

Allocacoc PowerCube 5 Power Outlets $22.30 1 $22.30

0.5m VGA Monitor Connecting Cable $5.56 1 $5.56

Comsol Male IEC-C14 to Female IEC-C13 Power Cable

2m

$11.90 1 $11.90

Comsol Male 3 Pin Plug to Female IEC-C13 Socket 2m $11.90 1 $11.90

Total $1,314.09

8.0 Appendix B - Components

Figure 21 - External Components

Figure 22 - Internal Components

Figure 23 - Internal Components (Cont.)

9.0 Appendix C - List of Software Packages

Table 3 - Software Packages and Dependencies Used

Device or Process Software Package/s used

BreezeLite Mini PC Windows Server 2016

Windows DHCP Server

FileZilla FTP Client

Windows Remote Desktop

CyberPower PowerPanel Personal Edition

S.A.R.T. Web-Based Control Interface

Intel NUC Ubuntu 16.04 “Xenial Xerus”

Motion

Geany

Movement Python

- Pyax12
- AsycIO

- WebSockets

Image Recognition Python:
- OpenCV 3.1.2

- Numpy

- Matplotlib

Motion Detection Python:
- OpenCV 3.1.2

- Numpy

QR Code Reading Python:

- OpenCV 3.1.2
- Pyzbar

- Imutils

- Numpy
- Matplotlib

Audio – Text to Speech Python:

- Pydub

- WebSockets

Audio – Speech to Text Python:

- speech_recognition

- pyaudio
- wave

- WebSockets

Arduino Nano Arduino

Robot Chassis Google SketchUp

Render of Robot & Control Panel IRender nXt SketchUp Plugin

10.0 Appendix D - List of Hardware

Table 4 - List of Hardware and Chassis Parts

Component Hardware

Robot Chassis Heavily modified design inspired by the Emu Mini 2 from
the Open Academic Robot Kit .

Robot Wheels Heavily modified design inspired by the Emu Mini 2 from

the Open Academic Robot Kit .

Intel NUC5CPYH Central computational device on board the Robot.

Corsair CMSO4GX3M1C1600C11
4GB (1x4GB) DDR3L SODIMM

Random Access Memory (RAM) for the Intel NUC.

Samsung PM851 MZ-7TE128D

128GB SSD
Solid State Drive (SSD) for the Intel NUC storage.

Dynamixel AX-18A Servo.

oCam 5MP USB 3.0 Camera Camera.

Arduino Nano Arduino Nano, responsible for collecting all the data from

the sensor array and sending it to the Intel NUC.

Infrared Proximity Sensor - Sharp
GP2Y0A21YK

Infrared Distance Sensor.

Triple-axis

Accelerometer+Magnetometer
(Compass) Board

Accelerometer & Compass.

MLX90614ESF-AAA Infrared

Temperature Sensor

Infrared Temperature Sensor.

Plasti-Dip
Liquid plastic, used for coating the wheels to make them
grip onto the ground or walls.

Ultimaker ABS 3D Printer Filament

1kg spool

The 3D printer filament, a type of plastic extruded through

a hot nozzle that builds a model by laying subsequent

layers on top of each other.

Quanum 12V-5A (7.2 - 25.2V) Dual

Output UBEC

Power delivery for the Intel NUC and servos.

USB2AX v3.2a

A small USB device that allows the servos to interface with

the Intel NUC.

0.5m USB 2.0 A male to 5-Pin Mini-

B Lead

USB cables and connectors, necessary to connect the

Arduino to the Intel NUC for sensor data collection

functionality.

0.5m USB A male to Micro-B Lead
USB cables and connectors, necessary to connect the
camera to the Intel NUC for video streaming functionality.

Turnigy Nano-Tech 1.3 Ah Lithium

Polymer Battery

Powers the entire mobile apparatus.

11.0 Appendix E - Web and Open Source Presence

Under our open source philosophy, everything we did was published online in the form of regular blogs,

code repositories and 3D model downloads.

Website Blog

A regular blog detailing the design and implementation process over the course of the 3 year project.

https://www.sfxrescue.com

Code Repositories on GitHub

All our code was made free to use and edit under the GNU-GPL license on GitHub, where we

encouraged other teams to contribute to or find inspiration in our solutions.
https://github.com/SFXRescue/SARTRobot

Editable 3D Models on Thingiverse
All our 3D models were made free to use and edit under the GNU-GPL license on the 3D model sharing

website Thingiverse.

https://www.thingiverse.com/SFXRescue/designs

YouTube Channel

The S.A.R.T YouTube channel has a series of videos including tutorials (Plasti-Dipping wheels to

improve grip and daisy-chaining the Dynamixel servos), experiments (WiFi range and stream tests) and
sharing new features and developments.

https://www.youtube.com/channel/UCOM41hoo5jFGdlgnjjvApSQ/videos

https://www.sfxrescue.com/
https://github.com/SFXRescue/SARTRobot
https://www.thingiverse.com/SFXRescue/designs
https://www.youtube.com/channel/UCOM41hoo5jFGdlgnjjvApSQ/videos

