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1.0 Abstract 

 
Figure 1 - The Semi-Autonomous Rescue Team, 2015 ð 
2017  

The Semi-Autonomous Rescue Team 

(herein known as the S.A.R.T.) (Figure 1) is a 
small group of Robotics and Information 

Technology enthusiasts formed in late 2015 

with the intent of creating a Robot capable of 

competing in the 2016 Rapidly Manufactured 
Rescue League (RMRL) at RoboCup in 

Leipzig, Germany. 

The project started with the basic Robot 
design and specifications supplied by Curtin 

University in Western Australia.  The idea was 

to use this as a starting point onto which teams 
could innovate and rework into their own 

Robot.  The original S.A.R.T. Robot consisted 

of the basic chassis design from Curtin 

University known as the “Emu Mini 2”, paired 
with a Raspberry Pi B+ and Dynamixel AX-

12A servo motors.  Over the past eighteen 

months, the initial design has transitioned to a 
fully custom designed and 3D printed chassis, 

an Intel NUC to replace the Raspberry Pi as the 

main control board, an Arduino Nano for 

collecting sensor data and an oCam 5 
megapixel USB camera for streaming the 

Robot’s point of view to a Control Panel 

Interface over enterprise grade Wi-Fi.  With 

these improvements, the team has experienced 
great success in competition, including: 

¶ Tied 1st Place – Rapidly Manufactured 

Rescue League, RoboCup 2016, 

Leipzig, Germany 

¶ 1st Place – Rapidly Manufactured 

Rescue League, RoboCup 2017, 

Nagoya, Japan 

¶ Open Source Award – Rapidly 

Manufactured Rescue League, 

RoboCup 2017, Nagoya, Japan 

2.0 Introduction  

After forming in late 2015, the Semi-

Autonomous Rescue Team entered its first 

competitive event in 2016 at RoboCup in 

Leipzig, Germany.  The Robot’s original design 
was based on the specifications and design 

supplied by Curtin University in Western 

Australia for the Emu Mini 2.  This design was 
improved before the competition to include 

streaming camera footage from a Raspberry Pi 

Camera to a computer and controlling the 

Robot itself over a short-range Bluetooth 
connection using a PlayStation 3 controller.  

The camera stream enabled the remote 

operation of the Robot when the operator does 
not have a direct line of sight, or, in the case of 

RoboCup, when the operator cannot look at the 

Robot while competing. 
One of the major issues with the Robot 

while competing in Germany was the latency of 

the video stream due to the massive congestion 

in the wireless radio environment – the delay 
made it difficult to navigate the Robot through 

the courses accurately.  The congested wireless 

environment inspired a greatly improved Wi-Fi 
network utilising an industrial grade Access 

Point (AP).  Implementation of such a bulky 

device would require an enclosure, as well as a 
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computer to control it, so a Control Panel with 

a mini PC, AP, Uninterruptable Power Supply 
(UPS) for the Power over Ethernet (PoE) and 

related peripherals was constructed.  The UPS 

also allows the Control Panel to be portable so 

the Robot can be operated in remote conditions 
or without access to stable power.  Observing 

the performance of other Robots at the 

competition inspired changes to the Robot 
itself.  One such improvement was to modify 

the chassis for upgraded internal components 

arranged in such a way that the space inside the 
chassis was used more efficiently by the more 

powerful hardware. 

After observations of the Robot’s 

performance and the performance of other 
teams in the RoboCup 2017 competition, it was 

concluded that a Robot performs better with a 

longer wheelbase and larger wheels, up to a 
point.  Having an excessively long wheelbase 

limits the Robot’s mobility in the courses, and 

the maximum size of the wheels directly 
correlates with the length of the wheelbase. 

Other improvements to the software side of the 

Robot’s operation include real-time motion 

tracking and image recognition as well as more 
accurate temperature and distance 

measurement, as the current temperature sensor 

can only reliably indicate a dramatic change in 
temperature rather than the quantitative value.  

The Infrared (IR) distance sensors cannot seem 

to be configured to return an accurate 

measurement that makes sense.  As for the 
Robot’s movement, the fine control over 

direction and speed afforded by the Control 

Panel was helpful in navigating through the 
courses.  The improved controls allow the 

operator to drive the Robot efficiently through 

a course or turn it around by flipping over 
against a wall to travel in the opposite direction 

without having to spin on its axis in a confined 

space. 

 

3.0 System Description 

3.1 Hardware 

3.1.1 Robot 

3.1.1.1 Chassis Design 
The physical design for the Robot went 

through nineteen different iterations of the 

chassis and wheels in order to make it suitable 

to be rapidly manufactured on commercially 

available 3D printers. 
The basis of our original design 

objective of creating a Robot chassis for this 

competition was to make something modular, 

so that different components could be swapped 
out if broken or if the use case called for a more 

specialised part.  Everything was to be self-

contained and capable of being put together like 
Lego, with modules attaching with a universal 

‘snap in’ mechanism.  After a few prototypes 

were designed and 3D printed, it was concluded 
that while the Robot was modular, the physical 

dimensions were too large to fit in the maze.  

Additionally, the singular point of contact for 

the snap in connector was not robust enough to 
withstand what we would consider normal use.  

The additional parts to 3D print drove up the 

manufacturing time and cost.  Overall we 
determined that, as a proof of concept, 

modularity on this scale was impractical for 

real-world applications. 
Starting from scratch, we looked at the 

original design of the Open Academic Robot 

Kit’s Emu Mini  2.  Considering its pros and 

cons, we realised that the form factor was ideal 
for navigating through the competition maze 

and the wheelbase allowed it to turn on the spot. 

With all the new hardware we intended to use 
in the Robot, a total redesign was required to 

ensure everything could fit  in a similar footprint 

to the original Emu Mini 2.  Simulated test fit s 

were run on the nineteen different prototypes of 
the current chassis model, which involved using 

3D models of the components (such as the Intel 

NUC, SSD, Camera, Arduino and battery) to 
verify that everything would fit  inside the 

smallest package possible. 

While the basic rectangular design was 
inspired by the Emu Mini  2, some of the 

original features were omitted in favour of other 

features that we considered more important.  

One of the more notable modifications was the 
exclusion of a mechanical arm so that the Robot 

was symmetrical on both top and bottom.  The 

rationale behind this decision was that the 
Robot could drive up against a wall and flip  

over.  In our testing, we discovered that this was 

quicker than turning around, especially when 
the dimensions of the competition maze are too 

small for the Robot to spin on its axis.  The 

other notable change from the original Emu 

Mini  2 was the versatility of the servo mounts.  
Servos on the Emu Mini  2 could only be 

mounted in a single orientation due to the screw 



 

holes and power/data cable pass-through holes 

(Figure 2). 
 

 
Figure 2 - The original servo mounts (from the Emu Mini 

2) only allowed the servos to mount in a single 
orientation.  

The Emu Mini 2 design differs to the 

design that we created, which had a single, 
larger cable pass-through hole and more screw 

holes where the servos mounted, giving us the 

flexibility  to orient the servos however we 
wanted (Figure 3). 

 

 
Figure 3 - The new design for a dual orientation servo 

mount.  The only shortcoming of this design is the 
reduced strength of the chassis as a result of the 

rectangular holes in the side s where the greatest 

twisting forces are experienced . 
Our design gave us three options for 

wheelbase length potentially having a short, 

medium or long wheelbase by simply changing 

the orientation of individual servos. 
Unlike the Emu Mini 2, we did not add any 

extra holes or unnecessary embossed text as 

they provided an entry point for foreign objects, 
increased print time and made it more likely to 

fail. 

The final chassis consisted of a 

rectangular box of dimensions 221.10mm long, 
150mm wide and 50mm high (Figure 4).   

 
Figure 4 - (Top View) The dimensions of the final Robot 
chassis. 
It had cutouts for attaching the servos at two 

orientations, and a lid that prevented the 
internal components from falling out or foreign 

objects from entering the chassis.  The physical 

size was the smallest that we could make it, 

given that we had to fit more powerful and 
larger hardware into it – mainly the small-form-

factor computer, SSD, power delivery, battery, 

camera and the multitude of sensors, compass, 
accelerometer, gyroscope and Arduino. 

3.1.1.2 Internal Components (Figure 5) 

 
Figure 5.  The internal components of the Robot.  

The main computational component of 
the Robot (i.e.  The brain) is the Intel 

NUC5CPYH which features a 1.6GHz dual 

core Intel Celeron N3050 processor.  The more 

powerful brain (compared to the Raspberry Pi 
we used in 2015/2016) allows for high frame 

rate, high bitrate and high resolution streaming, 

which also takes advantage of the superior and 
interchangeable Wi-Fi antenna on the NUC 

compared to the fixed antenna on the Raspberry 

Pi. 
The sensors (Infrared distance, 

gyroscope, compass, accelerometer) connected 

to an Arduino Nano which, like the camera was 



 

connected to the Intel NUC via USB.  This 

means swapping out different components uses 
a backwards compatible, universal standard 

connector, and, is what we used to interface the 

servos with the NUC via a USB2AX. 

Power was supplied by a lithium 
polymer battery with a capacity of 1.3 Ah, 

giving around an hour of continuous use, 

powering the servos and NUC while streaming 
to a single client.  The limited power supply was 

one reason that the NUC5CPYH was chosen, as 

it had a good power consumption to 
performance ratio, whereas a Pentium, i3 or i5 

model would require a larger capacity battery to 

run for the same period of time. 

The camera was the oCam 5MP USB 
3.0 Camera.  Although it has the capability for 

image processing built in, we only used it for 

streaming.  In the future, some image 
processing can be offloaded to the camera 

rather than the NUC or Control Panel. 
Under our open source philosophy, 

everything was made free to use under the 

GNU-GPL license on the 3D model sharing 

website Thingiverse.  Also uploaded to 

Thingiverse was editable versions of the 
wheels, chassis and belts so other people can 

use the S.A.R.T designs as a starting point for 

their own Robots or as a source of inspiration 
or modification. 

3.1.2 Control Panel 

The idea behind the S.A.R.T. Control 

Panel is that everything needed to operate the 

Robot is contained within a single package 
(Figure 6).   

 
Figure 6 - A conceptual  render of the S.A.R.T. Control 

Panel, created to aid the communication of the idea 

before construction began.  

Inside the Control Panel is an 

Uninterruptable Power Supply (UPS), Xirrus 

XR620 Access Point, BreezeLite Fanless Mini 

PC, AOC widescreen LED monitor and a 
Microsoft wireless keyboard and trackpad all 

contained in a Pelican carrying case (Figure 7).   

 
Figure 7 - The S.A.R.T. Control Panel showing all the 

internal components.  

The BreezeLite Mini PC was chosen 

based on its low power consumption and 

variety of I/O, solid state flash storage, small 
form factor and its passive cooling capability.  

It features a quad core Intel Atom x5-Z3250 

processor, part of the lowest power consuming 
skew of Intel’s mobile processors at only 2W of 

typical power consumption.  The solid state 

flash storage meant that there were no moving 

parts that could be damaged if the Control Panel 
experienced a shock, unlike hard drives where 

a significant shock or drop can cause the head 

and spinning platter to misalign and, as a result 
not function correctly or at all.  The small form 

factor of the BreezeLite Mini PC meant that it 

could fit inside the case, leaving enough room 
for the Access Point, UPS and power delivery 

apparatus. 

The Xirrus XR620 Access Point was 

chosen for our applications based on its 
customisability and reliability, providing a fast, 

stable connection despite a considerable 

amount of external wireless interference.  
Despite the fact that it is a higher end Access 

Point and being rather expensive, it was given 

to us by our school so we would not have any 

issues with Wi-Fi unreliability, range or 
dropped connections. 

The decision of the specific model of 

UPS we chose for the Control Panel came down 
to how long the battery would last based on our 

workload within the size constraints of the 

Pelican case.  In Japan, we found having a UPS 
immensely helpful to convert 110 volts to the 

240V Australian standard that we required for 

everything to work properly, with the aid of a 

transformer. 



 

The screen we used was a generic 

1600x900 resolution display that was chosen 
simply because it would fit inside the lid of the 

case and because it had a VGA connector which 

we used to connect it to the BreezeLite Mini 

PC.  The advantage of using a display over 
VGA rather than HDMI (also supported by the 

BreezeLite) was that VGA cables have screws, 

so the cable would not come loose from the 
screen or BreezeLite during the competition. 

The wireless keyboard used to control the 

BreezeLite Mini PC (and subsequently the 
Robot) was a generic Microsoft device chosen 

mainly for its slim form factor (allowing the 

Control Panel lid to close without having to 

remove the keyboard) and the included 
touchpad, negating the necessity for a mouse.  

The operator can simply use a finger to point 

around the screen, whereas a mouse requires 
operators to potentially have to deal with 

uneven or poor reflective surfaces that can 

cause tracking problems with a traditional 
optical mouse. 

Despite our use of a dedicated Control 

Panel, any device can be connected and used to 

operate the S.A.R.T. as long as the Robot has 
been previously instructed to automatically 

connect to the same network as the device used 

to control it.  This is because the Control 
Interface is hosted on the Robot’s local web 

server, and all the user needs to do is enter the 

Robot’s IP address in the URL bar of their 

browser and have access to the control, 
streaming and data collection functionality. 

3.2 Software 

3.2.1 Robot 

Ubuntu 16.04 LTS was used as the 

Robot’s operating system.  It was chosen as a 
lightweight and more open alternative to 

Windows operating systems, and as a friendlier 

alternative to other Linux distributions.  Its 
x86/64 architecture made it capable of running 

on the desktop-grade hardware in the Intel 

NUC.  Choosing a free operating system also 
allows others to replicate our project without 

having to pay for an operating system such as 

Windows. 

The code we run on top of Ubuntu is 
coded in Python, chosen because of its 

versatility, ease of use and popularity.  Some 

additional Python libraries were installed, such 
as Pyax12, AsyncIO, WebSockets and 

OpenCV. 

There are 6 main Python scripts run on 

the S.A.R.T. 
motion_tracking_filtered.py is a 

motion detection and tracking script.  It takes 

frames from the video stream and analyses 

them for objects that change position over time.  
If detected, it bounds the object in a box for easy 

identification. 

performance_party_data.py collects 
system performance data using the Python 

library psutil.  The information is formatted and 

sent to the Control Interface via WebSockets, 
where it undergoes further formatting and is 

displayed in the system monitoring section. 

qr-read.py is a QR code reader that 

takes frames from the video stream and displays 
decoded text in almost real time. 

sensor_party_server.py is a simple 

WebSocket server that listens for sensor data 
from the Arduino Nano’s serial port.  The data 

is formatted and sent on to the Control 

Interface. 
servo_party.py contains a WebSocket 

server that waits for instructions from the 

Control Interface.  When a key press has been 

received, the instructions for the appropriate 
action are sent to the Dynamixel servos. 

servo_party_data.py is a WebSocket 

server that reads temperature and supply 
voltage data from every connected servo.  The 

data is formatted and sent to the Control 

Interface, where it is used to calculate battery 

life statistics and report servo temperatures to 
the operator. 

In addition to the servo control scripts 

and software, the Robot runs Motion, a free 
software package designed for home 

surveillance and motion detection.  It is 

important to make the distinction between 
motion detection, where the program simply 

detects a change in pixels, and motion tracking, 

where the program is intelligent enough to track 

something throughout the scene and interpret it 
as a single object.  We had originally used a 

branch of Motion specifically for the Raspberry 

Pi called MotionPi, so when we migrated to the 
NUC in late 2016, we continued to use Motion 

(albeit the master branch rather than the Pi-

specific version).  We chose to continue with 
Motion because of our experience and because 

the Control Interface was already working with 

the software. 

The Robot runs the popular web server 
Apache 2 to serve the Web Control Interface.  

The interface was originally written in PHP, 



 

CSS and HTML.  With the recent adoption of 

WebSockets for communication, PHP has been 
phased out and replaced with JavaScript for the 

majority of communication and processing. 

Like our 3D models, all our code was 

made free to use and edit under the GNU-GPL 
license on GitHub, where we encouraged other 

teams to contribute to or find inspiration in our 

solutions. 

3.2.2 Control Panel 

The Control Panel (in the context of 
software) can be defined as any device that 

connects to the S.A.R.T. Robot and can load the 

interface in a web browser.  Such a device can 
run any operating system (mobile devices may 

work theoretically, given a keyboard is paired 

with the device, although this is untested).  The 
officially supported browser is Google Chrome, 

which allows the user to use all features of the 

Robot.  Mileage may vary when using other 

browsers. 
Additional functionality may be 

unlocked by using the official S.A.R.T. Control 

Panel, as it includes local software for extra 
features.  The official Control Panel runs 

Windows Server to manage a DHCP server to 

assign IP addresses to devices connecting via 

the Xirrus AP, however, any operating system 
will work if a DHCP server is installed.  The 

official Control Panel also includes a default 

gateway system with information that aids the 
user in setting up the Robot.  A built-in IP 

scanner allows the user to check what IP the 

Robot is connected to in the event that the 
DHCP server is not functioning. 

No other software is necessary on the 

Control Panel, as the interface itself is hosted on 

the Robot’s local web server. 

3.3 Communications 

The backbone of our network is the 

industrial grade Xirrus XR-620 Access Point, 

with hundreds of configuration options 

allowing us to edit our network as we please.  
The basic communication settings we used 

during the RoboCup 2017 competition were as 

follows: 
 

Band: 5GHz  

Wi-Fi Mode: A 
Channel: 44 

Channel bonding: Disabled 

Antenna count: Up to 4. 

The settings we used in the competition 

are by no means the limit of our access point’s 
capability.  It is capable of running 2.4GHz to 

5GHz Wi-Fi bands in modes ranging from ac, 

a, b, g and n and delivering transfer speeds of 

up to 1.7Gbps to 240 individual clients.  It is 
also capable of filtering out other Wi-Fi 

networks to ensure that it is the dominant 

network, which could be useful in a congested 
area.  It can dynamically change channels 

depending on the congestion and traffic and 

also can bond those channels together for a 
more stable and reliable connection for greater 

range and signal strength. 

The Control Panel runs a DHCP server 

that has allowed us to connect devices to the 
network at random.  This also means we do not 

have to manually assign a device an IP address 

as the DHCP server does that automatically.  
Another advantage this gives us is to set 

reserved IP addresses.  This is done to lock the 

Robot to one IP address that is always assigned 
to the same device.  The static IP address means 

that scripts that communicate between the 

Robot and Control Panel do not have to be 

updated with new IP address variables. 
The advantage of using an industrial 

grade access point is that with all the bandwidth 

is concentrated on a single client, meaning that 
it is less likely to experience an outage.  

Because access points of this class are designed 

to be reliable in congested areas, the benefit to 

using this access point is because it helps 
guarantee a more stable, reliable and stronger 

signal, even in a congested environment similar 

to the one experienced at RoboCup 2017.   

3.4 Human-Robot Interface 

First responders in a rescue situation 
rate ease of use highly on what they want from 

a confined space rescue Robot.  They need to be 

able to control the Robot with minimal coding 
experience and prior training.  This design 

philosophy was incorporated into the S.A.R.T. 

from day one, with the human-Robot interface 
built from the ground up with ease of use in 

mind. 

The culmination of this effort is a web-

based Control Interface that can be used on any 
device with a compatible web browser.  It is a 

complete front end experience that removes the 

operator from the bare bones of the operating 
system via a sleek interface (Figure 8). 



 

 
Figure 8 - The main page of the S.A.R.T. Control 
Interface  

The WASD keys, the most popular left-

hand key mapping for arrow keys, are used to 

control the Robot’s basic movement.  The 
number row (1 through to 0 on the keyboard) is 

used to adjust the Robot’s speed in increments 

of 10%, affording fine control to balance 
torque, speed and momentum during a mission.  

A keystroke collection service runs in the 

background, meaning the operator can use these 
controls while viewing any number of 

draggable and rearrangeable windows (Figure 

9).  This ability to choose what is displayed and 

where allows the operator to see only the 
information they want on the screen, with no 

distractions. 

 
Figure 9 - A possible use case of the rearrangeable 

windows.  In this case, the operator chose to view the 

raw data, video stream and log at the same time.  
The Control Interface features 10 main 

distinctive features. 

The SSH Terminal (Figure 10), 
powered by ShellInABox, gives the operator 

complete access to the S.A.R.T’s Ubuntu 

operating system.  This can be useful for many 

things from killing unresponsive processes to 
monitoring activity on htop. 

 
Figure 10 - The SSH console running the process monitor 

"top".  

The Video Stream (Figure 11) is 

powered by a highly customised software 
package called Motion.  Our modifications 

disable the motion detection (not motion 

tracking) features for faster processing, and 

modify the quality to size ratios for optimal 
streaming performance.  The result is a latency 

free, high-quality video of everything the Robot 

can see, streamed directly to the operator in real 
time. 

 
Figure 11 - The video stream shows the operator what 

the Robot can see in the middle of a mission.  
Audio Communication (Figure 12) is 

a relatively new feature, only implemented 

during RoboCup 2017.  A Text to Speech 

system allows the operator to talk to a victim 
nearby the Robot, while the Speech to Text 

system allows the victim to talk to the operator.  

In the future, this system will be further 
streamlined using the VoIP protocol to allow 

bi-directional communication similar to a 

phone or Skype call. 

 
Figure 12 - The audio feature allows the operator to 

communicate with the victim  and vice versa.  
IR Distance (Figure 13) is a planned 

mapping feature that makes use of the 4 infrared 

distance sensors on each side of the Robot.  It 

shows the operator the distance between the 
Robot and the nearest obstacle. 



 

 
Figure 13.  The IR sensor display indicate s the distance 
to the nearest  obstacle on each side of the Robot. 

The Raw Data Output (Figure 14) 

window displays various sensor and servo 
statistics in text form.  This can be used for 

anything from checking if an individual servo 

is overheating to reading the temperature of an 
object in front of the Robot. 

 
Figure 14 - The Raw Data system shows vital Robot 
statistics and raw sensor input.  

System Logging pulls data from the 

directory /var/log and displays it in a scrolling 
window (Figure 15).  It is the best way to keep 

track of events happening on the Robot at an 

operating system or kernel level. 

 
Figure 15 - The log displaying information from 
/var/log/ syslog 

FTP File Access, powered by 

MonstaFTP, allows the operator to quickly edit 
files on the Robot using an intuitive web 

interface (Figure 16). 

 
Figure 16 - The Web FTP panel, powered by MonstaFTP.  

Power Options let the operator quickly 

and safely reboot the S.A.R.T Robot, or power 

it off completely (Figure 17). 

 
Figure 17 - Power options let the operator turn off the 
Robot without having to know Linux commands.  

The interface dedicates the lower 

portion of the page to System Monitoring 

(Figure 18).  This section keeps track of RAM 

and CPU usage, CPU temperature, battery 

statistics and uptime to allow the operator to 

ensure the S.A.R.T. is functioning normally. 

 
Figure 18 - The lower section of the interface, tracking 

the NUC and battery statistics.  
The Local Help Documentation 

allows the operator to quickly troubleshoot a 

wide range of possible faults on the fly (Figure 

19).  This means there is often no need to 
replace the Control Panel and Robot if 

something goes wrong, saving valuable time in 

a rescue situation.  All help documentation is 

local so that operators do not need to research 
the problem on an internet connected device. 

 
Figure 19 - The main page of the help documentation, 

featuring an extensive list of articles covering possible 

faults in each system.  

Like the rest of the S.A.R.T. project, 

the entire interface was made open source 

during its development to allow other 

developers to contribute and to implement it in 
their own projects. 



 

4.0 Application 

4.1 Setup of Robot & Operator Station 

The setup process of the Robot and 

Control Panel was designed to be as simple as 
possible.  As mentioned previously, first 

responders in a rescue situation rate ease of use 

highly for Robotic assistance.  In a high stakes 
environment, they need something that can go 

from packed to deployed in a matter of minutes. 

One of our core design philosophies for user 

experience was simplicity, meaning the setup 
process we demonstrated in Japan is 

remarkably straightforward and intuitive. 

Firstly, all devices in the Control Panel 
are powered on simultaneously with a single, 

clearly visible power button.  The operator can 

then power on the S.A.R.T. Robot.  After the 
boot sequence, it automatically connects to the 

waiting S.A.R.T. network.  If the operator 

knows the IP address of the Robot, they can 

navigate to the Control Panel and start using the 
Robot immediately.  Otherwise, they can use 

the IP scanner built into the default gateway to 

find the Robot and continue as usual with 
minimal time lost. 

In Japan, control scripts had to be 

started manually using the SSH console on the 

web interface.  However, to simplify the 
process even more and to satisfy the 

overarching design criteria of an easy-to-use 

interface that requires minimal prior training to 
use, these scripts will run automatically on start 

up in the future.   

4.2 Pack Up of Robot & Operator Station 

If the operator has already recovered 

the Robot, the power-off process has three 
steps.  The Robot can be safely shut down using 

the power options in the interface.  The Control 

Panel can then be turned off in the usual way 
(Start > Shutdown).  Once the device has been 

safely powered off, power can be cut by 

depressing the UPS power button.  Power can 

be cut to the Robot using the switch (Figure 20). 

 
Figure 20 - The 3 -step power -off process.  

Additional pack up steps may include 
placing the Robot in its foam lined Pelican carry 

case, as well as placing a protective foam shield 

between the monitor and keyboard of the 
Control Panel before closing the case.  

Optionally, the battery in the Robot can be 

removed, although assuming it is not 

completely flat it is safe to leave it in 
indefinitely. 

4.3 Mission Strategy 

The Rapidly Manufactured Rescue 

League (RMRL) is a sub-division of RoboCup 

Rescue.  It is a research competition that 
encourages students to develop innovative 

solutions to open response Robotics problems 

in Search and Rescue, Hazardous Materials 
Response, Explosive Ordnance Disposal and 

Tactical Reconnaissance 

(oarkit.intelligentRobots.org).  The RMRL 
brings this competition to high schools and 

undergraduate university classrooms, focussing 

on the challenges associated with operating 

small Robots in confined spaces and low-cost 
prototyping, electronics and sensors to 

ultimately lower the barrier of entry into 

Robotics research. 
The specific strategy employed by the 

S.A.R.T. involves a careful analysis of each 

course to decide on the best route.  For example, 

in the specific courses of stepfield and elevated 
ramps, the strategy for navigating was different 

for the dirt or gravel pits.  This strategy 

involved ‘hugging’ the left wall (when 
observed from behind), then executing a 90-

degree turn and driving over the elevated 

section, as opposed to driving diagonally over 
the elevated section as this would often result in 

the Robot becoming beached.  If this was the 

resulting eventuality, our solution to becoming 

unstuck was to rapidly change the direction of 
the servos, effectively ‘rocking’ backwards and 

forwards to build up enough momentum to 

‘fall’ off the perch where the Robot was stuck. 

http://oarkit.intelligentrobots.org/


 

A different strategy was employed for 

the dirt and gravel pits, because as the Robot is 
relatively light and the smooth wheel design 

allowed for the Robot to ‘skim’ along the top of 

the surface without sinking in.  At the end of 

each course, the Robot would drive up against 
the wall and execute a flip instead of turning 

around, which, in our experience was faster and 

more efficient, reducing the likelihood of 
becoming stuck perpendicular to the direction 

of the course. 

These operation decisions were the 
result of careful experimentation with the 

courses and from previous experience 

controlling the robot. 

4.4 Experiments & Testing 

Much of the experimentation and 
testing phase occurred early in the development 

of the physical design and software 

development.  Many of the experiments 

conducted exposed new problems that had to be 
solved for the changes made as a result of the 

experimental findings to be effective. 

4.4.1 Experimental Design 
It was through experimentation that it 

was concluded that a vertically symmetrical 

Robot (the same on the top and bottom) would 

be useful in navigating through confined 
spaces, as a 180-degree turn was possible by 

driving up against a wall.  Executing one of 

these turns resulted in the controls swapping 
and the stream upside down on the operator’s 

end, so we had to patch the Control Interface to 

include a function that flips the controls and 
stream footage. 

4.4.2 Materials Testing 

The usefulness of belt prototypes 

printed in the NinjaFlex flexible 3D printer 
filament were tested using a Pasco Scientific 

Force Sensor.  This tool was used to measure 

the force (in Newtons) required to break the 
flexible filament. 

The force sensor only took 

measurements up to 55 newtons, and the small 
sample of NinjaFlex did not break, even after 

multiple tests (Graph 1).   

 
Graph 1 ð The results of 6 stretch tests over a period of 

30 seconds.  The readings stop at 55N as it is the 

maximum value supported by the sensor.  

Additional tests were used to examine 

other properties of the material, such as how 

well it retains its flexible elastic properties after 

stretching (Graph 2). 

 
Graph 2 - Repeatedly stretching the band to 12.5cm to 

test how elasticity would reduce after repeated strain.   

Apparent is a moderate negative relationship  as the 

force required to stretch the band to the same length 
reduced over repeated tests.  

4.4.3 Wireless Connection Range 

Multiple experiments were run to 
verify the maximum range of the Xirrus WiFi 

Access Point.  This was done by connecting to 

the S.A.R.T. network using a laptop (which had 
the same wireless network adapter as the 

Robot) and walking in a straight line until the 

signal was completely lost.  The average 

distance as calculated from the tests was around 
90m in a crowded Wi-Fi environment which 

was thought to accurately simulate the 

conditions at the competition. Fortunately, this 
assumption turned out to be correct as we were 

able to operate wirelessly at ranges of over 50 

metres during competition in Japan. 

4.4.4 Streaming Reliability 
The reliability of streaming video 

footage was tested by loading the Robot with 

numerous streaming clients to see at what point 
the stream cut out or the bandwidth of the 

Access Point was saturated.  Having a low 

powered dual-core processor in the NUC, the 
stream began to drop frames, stutter and cut out 

after more than six clients were connected.  The 

effects of this were exacerbated as the range 



 

increased, but considering only one or two 

clients would need to be connected to the Robot 
at any one time, the range and stream quality 

would remain normal. 

4.4.5 Battery Duration Testing 

The usable time given by the UPS 
when the Control Panel is in the ‘untethered’ 

mode (i.e.  not plugged in) was tested by 

building the power network required for the 
Control Panel to function.  The worst case 

scenario was simulated by initiating a synthetic 

load on the BreezeLite Mini PC and saturating 
the Access Point with a large file transfer over 

the Wi-Fi network using FTP.  The results gave 

a minimum usable time of around 75 minutes. 

The battery performance of the robot was also 
tested using a 1300 mAh LiPo battery. A series 

of tests determined a maximum run time of 90 

minutes. We used the information gathered in 
these tests to ensure enough time was left 

between runs to swap batteries hourly during 

competition. 

4.4.6 Experimenting at RoboCup 

The setup day of the competition in 

Japan was dedicated to testing the Robot in the 

competition mazes with the various wheelbase 
lengths.  It was discovered that the long 

wheelbase tended to get the Robot stuck on flat 

surfaces in courses such as the stepfield, to 
which we thought that shortening the wheelbase 

would have a positive effect.  After removing 

everything inside the Robot and reciprocating 

the orientation of the servos, more tests were 
conducted with the short wheelbase.  It was 

concluded after a short period of testing that, 

while the short wheelbase provided better 
performance in stepfield, the performance in 

every other course decreased.  It was therefore 

decided that the longer wheelbase should be 
used for the competition as it was the most 

compatible with the majority of the courses in 

the competition. 

4.5 How the particular strengths of the team 

are relevant to applications in the field 

Each member of the S.A.R.T. has their 

own defined roles and skill set.  The different 

strengths they possess (Python 

coding/programming; web developing for front 
and backend; 3D modelling and rendering; 

network configuration and administration; 

building/construction; documentation) can be 
applied to the field.  For example, programming 

in Python and web development for front and 

backend ultimately gets the Robot moving and 

sending the data back for analysis via a web 
server hosted on the Robot itself.  3D Computer 

Assisted Design (CAD) and rendering produce 

the images and simulations of the Robot’s use 

cases, as well as the physical design.  On top of 
all that, a viable network must connect the 

Robot to the Control Panel despite the 

difference in hardware and software on each 
device as created by individual team members. 

These disciplines require teamwork and 

communication due to the different people 
working on the same project having different 

problem-solving methods different ideas for 

implementing solutions to the same problem. 

This reflects a real world engineering 
process wherein the team who designs the 

product may not necessarily be the same team 

that manufactures the product, who in turn may 
not be the same team who programs the product 

or tests the product. 

Detailed documentation is necessary in 
this case, as for the reasons outlined above. 

Every member of the team is experienced in 

documenting their ideas and processes through 

the website blog to communicate the design and 
updates through a medium that the entire team 

can consult readily with ease.  It also allows for 

the easy sharing of multimedia content to 
explain concepts to not only the team but also 

the wider open source community. 

 

5.0 Conclusion 

5.1 What the team has learned so far 

So far through the process of designing 

and building the many prototypes and iterations 

of the Robot, the members of the S.A.R.T. have 

all grown more skilled in their respective areas, 
leading to more sophisticated and streamlined 

programs and designs.  As a result, we can 

anticipate potential problems before they occur 
and amend them before they become a major 

issue.  Specific examples include wireless 

network optimisation, computer to computer 
communication via browser based web 

applications on different operating systems, 3D 

design and rendering, 3D printing, image 

manipulation via a remote video stream, 
controlling servos with a variable speed 

function using key letter ID numbers sent over 

a wireless network and building a cheap, 
rapidly manufactured complete system in a 

small form factor. 



 

5.2 What is planned between now and the 

competition in 2018 

As we, the current members of the 

S.A.R.T. are in our final year of college, we 
plan to find new members who wish to continue 

the development of this project.  However, all 

existing members have expressed interest in 
continuing to work on the project, and 

potentially act as mentors to the students who 

will take over and continue to improve the 

project before RoboCup in Canada in 2018. 
To aid the continued development of the 

project, the team has come up with some new 

ideas for these students to work on in 2018. 

5.2.1 Update System 
Useful for when the S.A.R.T. has been 

deployed in the field.  This system will notify  
the operator of a S.A.R.T. Robot when there are 

software updates available.  It should have the 

ability to automatically download and install 

the updates if the operator approves the update. 

5.2.2 Audio Communication 

Set up a streamlined audio 

communication system using the VoIP protocol 
rather than two separate text-to-speech and 

speech-to-text systems.  This should allow the 

operator to talk to a victim directly, much like a 

phone or Skype conversation. 

5.2.3 Browser Cross-Compatibility  

Implement support for the S.A.R.T 

Control Interface on other popular browsers, 
such as Firefox and Internet Explorer. 

5.2.4 Expand the Versatility of the Control 

Panel 
Create a custom battery for the UPS 

that utilises the space inside the Pelican case 

more efficiently.  With the extra stored power, 

implement a LiPo charging system into the 
Control Panel to allow Robot batteries to be 

recharged straight off the UPS for an increased 

run time in remote locations or when power is 
not available. 

5.2.5 Dynamic S.A.R.T. Network 

Create a network that can be boosted to 
cover a larger range by multiple Control Panels.  

Allow multiple Robots to be connected to the 

dynamic network at the same time, and let each 

operator select a specific Robot to control.  This 
reflects a real world rescue situation where 

multiple cheap Robots would be used at the 

same time to cover more ground. 

5.2.6 Design Alterations 

Based on the observations of the 

current S.A.R.T team from RoboCup 2017, the 

new team can make informed decisions on 

physical chassis and wheel design changes to 
better navigate courses. 

5.2.7 Change the Main Computational 

Component 

Change the main computational 
component from a dual-core Intel NUC to the 

UDOO X86 ULTRA.  Although more 

expensive than the NUC, it features a quad core 
processor and 8GB of RAM and is capable of 

running any x86 based operating system, 

including the Arduino™ 101 world, including 
all the sketches, libraries and the official 

Arduino 101 IDE.  It has General Purpose 

Input/Output (GPIO) pins for attaching sensors 

directly to the board itself without having to 
have an Arduino Nano as an intermediary 

between the NUC and the array of sensors. 

5.2.8 Migrate to Ubuntu on the Control 

Panel 

The Control Panel is currently using a 

free trial of Windows Server because the 
BreezeLite Mini PC only officially supports 

Windows based operating systems.  

Unfortunately, the free trial is about to expire, 

so a different solution needs to be found. 

5.2.9 Building a Test Maze 

Basing the design off the maze used in 

Japan, the team could test their Robot at home 
in the actual competition environment. 

 

 

The new team in 2018 will bring many 
new ideas to the table and may choose to 

implement all or none of these features. These 

are only our suggestions based on our 3 years 
of development, testing and competition 

experience.
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7.0 Appendix A - Components & Estimated Total Cost 

Table 1 - Components & Estimated Total Cost ð Robot Only  

Component  Price 

(USD)  

Quantity Total 

(USD) 

Intel NUC5CPYH $122.36 1 $122.36 

Corsair CMSO4GX3M1C1600C11 4GB (1x4GB) DDR3L 

SODIMM 

$39.20 1 $39.20 

Samsung PM851 MZ-7TE128D 128GB SSD $64.00 1 $64.00 

Dynamixel AX-18A $105.52 4 $422.08 

oCam 5MP USB 3.0 Camera $96.16 1 $96.16 

Arduino Nano $28.80 1 $28.80 

Infrared Proximity Sensor - Sharp GP2Y0A21YK $11.16 4 $44.64 

Triple-axis Accelerometer+Magnetometer (Compass) 

Board 

$11.96 1 $11.96 

MLX90614ESF-AAA Infrared Temperature Sensor $23.42 1 $23.42 

Plasti-Dip $26.40 2 $52.80 

Ultimaker ABS 3D Printer Filament 1kg spool $32.00 6 $192.00 

Quanum 12V-5A (7.2 - 25.2V) Dual Output UBEC $10.25 1 $10.25 

USB2AX v3.2a $68.56 1 $68.56 

0.5m USB 2.0 A male to 5-Pin Mini-B Lead $4.76 1 $4.76 

0.5m USB A male to Micro-B Lead $4.76 1 $4.76 

Turnigy Nano-Tech 1.3 Ah Lithium Polymer Battery $15.58 3 $46.73 

Total $1,232.48 

 
Table 2 - Components & Estimated Total Cost ð Control Panel Only  

Component  Price 

(USD)  

Quantity Total (USD) 

Pelican PROTECTOR CASE™ Camera Case (1514) $229.66 1 $229.66 

BreezeLite SN4-X5 Windows 10 Mini PC $279.20 1 $279.20 

CyberPower Value GP 1000VA/530W [VALUE1000EI] 

Line Interactive Ups  

$138.40 1 $138.40 

AOC E2070SWN 19.5in Widescreen LED Monitor $87.20 1 $87.20 

Xirrus XR620 WiFi Access Point (inc.  PoE Injector & 

Ethernet Cables) 

$460.00 1 $460.00 

Microsoft All-In-One Media Keyboard $45.60 1 $45.60 

HDMI to VGA + Stereo Audio Converter $22.36 1 $22.36 

Allocacoc PowerCube 5 Power Outlets $22.30 1 $22.30 

0.5m VGA Monitor Connecting Cable $5.56 1 $5.56 

Comsol Male IEC-C14 to Female IEC-C13 Power Cable 

2m 

$11.90 1 $11.90 

Comsol Male 3 Pin Plug to Female IEC-C13 Socket 2m $11.90 1 $11.90 

Total $1,314.09 

 

 

 

 
 

 



 

8.0 Appendix B - Components 

 
Figure 21 - External Components  

 

 
Figure 22 - Internal Components  

 
 
 
 
 
 
 



 

 
Figure 23 - Internal Components (Cont.)  

  



 

9.0 Appendix C - List of Software Packages 

Table 3 - Software Packages and Dependencies Used  

Device or Process Software Package/s used 

BreezeLite Mini PC Windows Server 2016 

Windows DHCP Server 

FileZilla FTP Client 

Windows Remote Desktop 

CyberPower PowerPanel Personal Edition 

S.A.R.T. Web-Based Control Interface 

Intel NUC Ubuntu 16.04 “Xenial Xerus” 

Motion 

Geany 

Movement Python 

- Pyax12 
- AsycIO 

- WebSockets 

Image Recognition Python: 
- OpenCV 3.1.2 

- Numpy 

- Matplotlib 

Motion Detection Python: 
- OpenCV 3.1.2 

- Numpy 

QR Code Reading Python: 

- OpenCV 3.1.2 
- Pyzbar 

- Imutils 

- Numpy 
- Matplotlib 

Audio – Text to Speech Python: 

- Pydub 

- WebSockets 

Audio – Speech to Text Python: 

- speech_recognition 

- pyaudio 
- wave 

- WebSockets 

Arduino Nano Arduino 

Robot Chassis Google SketchUp 

Render of Robot & Control Panel IRender nXt SketchUp Plugin 

 
 
 
 

 
 
 
 
 
 
 



 

10.0 Appendix D - List of Hardware  

Table 4 - List of Hardware and Chassis Parts  

Component Hardware 

Robot Chassis Heavily modified design inspired by the Emu Mini 2 from 
the Open Academic Robot Kit . 

Robot Wheels Heavily modified design inspired by the Emu Mini 2 from 

the Open Academic Robot Kit . 

Intel NUC5CPYH Central computational device on board the Robot. 

Corsair CMSO4GX3M1C1600C11 
4GB (1x4GB) DDR3L SODIMM 

Random Access Memory (RAM) for the Intel NUC. 

Samsung PM851 MZ-7TE128D 

128GB SSD 
Solid State Drive (SSD) for the Intel NUC storage. 

Dynamixel AX-18A Servo. 

oCam 5MP USB 3.0 Camera Camera. 

Arduino Nano Arduino Nano, responsible for collecting all the data from 

the sensor array and sending it to the Intel NUC. 

Infrared Proximity Sensor - Sharp 
GP2Y0A21YK 

Infrared Distance Sensor. 

Triple-axis 

Accelerometer+Magnetometer 
(Compass) Board 

Accelerometer & Compass. 

MLX90614ESF-AAA Infrared 

Temperature Sensor 

Infrared Temperature Sensor. 

Plasti-Dip 
Liquid plastic, used for coating the wheels to make them 
grip onto the ground or walls. 

Ultimaker ABS 3D Printer Filament 

1kg spool 

The 3D printer filament, a type of plastic extruded through 

a hot nozzle that builds a model by laying subsequent 

layers on top of each other. 

Quanum 12V-5A (7.2 - 25.2V) Dual 

Output UBEC 

Power delivery for the Intel NUC and servos. 

USB2AX v3.2a 

A small USB device that allows the servos to interface with 

the Intel NUC. 

0.5m USB 2.0 A male to 5-Pin Mini-

B Lead 

USB cables and connectors, necessary to connect the 

Arduino to the Intel NUC for sensor data collection 

functionality. 

0.5m USB A male to Micro-B Lead 
USB cables and connectors, necessary to connect the 
camera to the Intel NUC for video streaming functionality. 

Turnigy Nano-Tech 1.3 Ah Lithium 

Polymer Battery 

Powers the entire mobile apparatus. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

11.0 Appendix E -  Web and Open Source Presence 

Under our open source philosophy, everything we did was published online in the form of regular blogs, 

code repositories and 3D model downloads. 

 

Website Blog 

A regular blog detailing the design and implementation process over the course of the 3 year project. 

https://www.sfxrescue.com 
 

Code Repositories on GitHub 

All our code was made free to use and edit under the GNU-GPL license on GitHub, where we 

encouraged other teams to contribute to or find inspiration in our solutions. 
https://github.com/SFXRescue/SARTRobot 

 

Editable 3D Models on Thingiverse 
All our 3D models were made free to use and edit under the GNU-GPL license on the 3D model sharing 

website Thingiverse. 

https://www.thingiverse.com/SFXRescue/designs 

 

YouTube Channel 

The S.A.R.T YouTube channel has a series of videos including tutorials (Plasti-Dipping wheels to 

improve grip and daisy-chaining the Dynamixel servos), experiments (WiFi range and stream tests) and 
sharing new features and developments. 

https://www.youtube.com/channel/UCOM41hoo5jFGdlgnjjvApSQ/videos 

 

https://www.sfxrescue.com/
https://github.com/SFXRescue/SARTRobot
https://www.thingiverse.com/SFXRescue/designs
https://www.youtube.com/channel/UCOM41hoo5jFGdlgnjjvApSQ/videos

